范文编号:HG199 范文字数:10847,页数:24 摘 要:本范文针对微波催化酯化反应过程表现出较强的非线性,影响因素众多,催化机理复杂的特点,充分利用支持向量机在处理小样本方面的优势,使用最小二乘支持向量机(Least Square, LS-SVM)基于实验数据对水杨酸乙酯的微波催化合成反应进行建模。通过交叉验证,模型的拟合误差平方和为2.93%,。标准粒子群优化(Standard Particle Swarm Optimization)算法结构简单易于实现,但处理高维复杂问题容易陷入局部极值。为此,对标准粒子群进行改进,首先构建随机粒子群算法,通过标准测试函数验证,表明其在运行速度和寻优能力上都好于标准粒子群,但可能会将找到的最优值又抛出。最终本文实现一种保证全局收敛的算法,并用于优化水杨酸乙酯的微波催化合成的SVM模型,得到最优条件为:酸醇比1/11,功率402W,催化剂用量3.00mL,反应时间43min,对应的产率为81.91%。 关键词:微波;催化酯化;支持向量机;粒子群优化 Abstract: This article built SVM model of synthesis of ethyl salicylate under microwave on the experiment data ,by using LS-SVM toolbox .Nonlinearity and complex mechanism is showed in the microwave catalytic esterfication, but this I advantage of SVM as well as dealing with small sample.,. By cross validation the sum of square error of the model is 2.93%.The standard PSO optimization algorithm is easy on structure and prone to be carried out ,but may sink into local best when conducting complex problems of higher-dimension .For this reason, PSO is improved in as stochastic PSO. By verifying on test function, the latter algorithm is better in speed and optimization ability ,but may throw the found best solution .Eventually a styptic algorithm in the global region is carried out to optimize the svm model of synthesis of ethyl salicylate under microwave .The best condition is :acid alcohol ratio of 1/11,the power of 402W, catalyst of 3.00 mL and reaction time of 43 min. The corresponding yield is 81.91%.
|
上一篇:三氟乙酰乙酸乙酯的制备 | 下一篇:有机硅阳离子乳液的制备及优化研究 |
点击查看关于 微波 催化 反应 SVM 模型 优化 的相关范文题目 | 【返回顶部】 |