网站地图
范文同学网


自动化 模具 机械 电子 通信 动画 英语范文 工程管理 金融范文 旅游管理 工业工程 生物工程 给排水范文 西门子PLC 历史学 三菱PLC
单片机 财务 会计 法律 行政 物理 物流范文 电子商务 制药工程 包装工程 土木工程 材料科学 汉语言范文 欧姆龙PLC 电压表 松下PLC
计算机 化工 数电 工商 食品 德语 国贸范文 人力资源 教育管理 交通工程 市场营销 印刷工程 机电一体化 数控范文 变电站 文化产业

  • 网站首页|
  • 文档范文|
  • 人工降重|
  • 职称文章发表|
  • 合作期刊|
  • 范文下载|
  • 计算机范文|
  • 外文翻译|
  • 免费范文|
  • 原创范文|
  • 开题报告

联系方式

当前位置:范文同学网 -> 免费范文 -> 经济学范文 -> 外国对华直接投资决定因素分析
金融文章范文| 财务管理| 会计专业| 国贸范文| 市场营销范文| 电子商务范文| 财务会计范文| 电子商务| 会计范文| 财务范文| 金融范文| 电子商务范文| 经济范文| 营销范文
·电气自动化原创文章范文 ·学前教育专业原创文章范文 ·国际经济贸易原创文章范文 ·药学专业原创文章范文 ·英语专业原创文章范文 ·公共事业管理原创文章范文
·金融专业原创文章范文 ·广播电视编导原创文章范文 ·电子商务专业原创文章范文 ·法律专业原创文章范文 ·工商管理原创文章范文 ·汉语言文学原创文章范文
·人力资源管理原创文章范文 ·摄影专业原创文章范文 ·心理学专业原创文章范文 ·教育管理原创文章范文 ·市场营销原创文章范文 ·计算机专业原创文章范文
·物流管理专业原创文章范文 ·小学教育专业原创文章范文 ·行政管理专业原创文章范文 ·土木工程管理原创文章范文 ·财务会计专业原创文章范文 ·信息管理信息系统原创范文
·新闻学专业原创文章范文 ·眼视光技术原创文章范文 ·播音与主持原创文章范文 ·广告学专业原创文章范文 ·表演专业原创文章范文 ·动画专业原创文章范文
·视觉传达设计原创文章范文 ·数控技术专业原创文章范文 ·录音艺术原创文章范文 ·光机电应用技术原创范文 ·机电一体化原创文章范文 ·印刷技术专业原创文章范文
·动漫设计与制作原创范文 ·软件技术专业原创文章范文 ·书法学专业原创文章范文 ·应用电子技术原创文章范文 ·电子信息工程技术原创范文 ·机械专业原创文章范文
·酒店管理专业原创文章范文 ·旅游管理专业原创文章范文 ·文化产业管理专业原创范文 ·体育教育专业原创文章范文 ·通信工程专业原创文章范文 ·护理专业原创文章范文

原创文档范文点击进入 → 金融专业原创文档范文       现成文档范文点击进入 → 金融专业文档范文

外国对华直接投资决定因素分析

本文ID:LW8509 ¥
外国对华直接投资决定因素分析 [摘 要]本文重点对 FDI决定因素进行实证分析。目前,我国FDI目前处于需求决定状态,在对有关文献简要回顾基础上, 建立计量模型计算分析得到一些有意义的结论。多年来,中国成功吸引利用了大量的外资,该奇迹的核心正在于其由计划经济向市场经济的转轨, 这种转轨用“转轨变量”来衡量。转轨..

 外国对华直接投资决定因素分析

 
 [摘 要]本文重点对 FDI决定因素进行实证分析。目前,我国FDI目前处于需求决定状态,在对有关文献简要回顾基础上, 建立计量模型计算分析得到一些有意义的结论。多年来,中国成功吸引利用了大量的外资,该奇迹的核心正在于其由计划经济向市场经济的转轨, 这种转轨用“转轨变量”来衡量。转轨变量主要表明, 中国在市场化进程和对外开放两个方面的发展变化, 可以用两个典型指标较全面地得以反映。
 [关键词] 外国对华直接投资  决定因素
 现在越来越多的发展中国家开始主动鼓励和吸引外国直接投资,因此研究外国直接投资的影响因素有重要意义。本文主要从外国直接投资需求方面的决定因素进行分析,重点研究区位变量及转轨变量对FDI的影响。
 一、选题背景 
 一个国家最重要的任务就是促进经济的增长,而资本、人力、技术等因素还是被普遍承认为经济的增长动力,对于中国这样一个发展中国家而言,还有众多的劳动力需要更多的资本投入才能解决就业、温饱和发展的问题。所以在资本中占极大比例的外国直接投资,对中国来说,就具有举足轻重的作用。
 改革开放以来,我国的外国直接投资(Foreign Direct Investment ,简写为FDI)获得了长足地发展。1985年我国外国直接投资仅为20亿美元,而中国近两年引进外商直接投资的绝对数量连续超过美国,位居世界第一。截至去年底,中国的外商直接投资存量约为2500亿美元。
 随着经济全球化趋势的进一步深化、跨国公司国际生产体系作用的日益增强,中国通过国际分工和世界市场不断融入世界经济体系,外国直接投资对我国国民经济的作用和影响越来越重要。所以我们有必要研究影响外商直接投资增长的因素,从而针对性的改变这些因素,为我过的招商引资工作带来便利。
 找出促进外商在华直接投资的影响因素及这种影响的强度,为更好的吸引外资提供理论支持,正是本文的写作目的所在。
       二、文献综述
 在大量的FDI有关的文献资料当中,关于FDI影响因素分析的成果有不少。在实证研究当中,大多数的研究都是运用统计分析方法来寻找和确定外商直接投资的影响因素,数据则采用横截面数据或时间序列数据。
 如Culem(1988)采用横截面数据研究发现市场规模和GDP增长率与外商直接投资的流入呈显著的正相关关系;Torrisi(1985)采用时间序列数据分析了1958至1980年间哥伦比亚吸引外商直接投资的情况,发现外资流入与市场规模呈现显著的正相关关系与市场增长率呈正相关关系,但不显著,他还引入了贸易顺差指标,结果发现该指标与外资流入呈显著的负相关关系。Jeon(1992)在他关于外商在韩国工业直接投资的决定因素分析研究中,发现随着韩国进口的增长和进口关税的降低,外商直接投资具有下降的趋势,而用出口来代替直接投资。
 对中国问题的研究有Broadman和Sun(1997)分析了GNP,劳动力成本,基础设施,识字率和沿海位置对外资在中国各省市的影响,发现除劳动力成本外,其它因素在统计上都显著;魏巍贤(1997)采用1982-1995年的时序数据,运用多元线性回归方法,发现市场规模,劳动力成本,进口额与汇率在我国外商直接投资中起着显著的作用;鲁明泓(1997)采用时间序列数据,运用主成分分析方法对我国90年代中期不同地区的投资环境进行了分析,即从影响不同地区外商直接投资的因素进行了分析和评价等等。
 将前面各位学者所得到的重要结论进行归纳,可以得到影响FDI的主要因素有以下几点:1.政治变量。政治稳定性是FDI的前提条件,是FDI重要决定因素。2.基础设施变量。基础设施是FDI重要因素已经成为不争的命题。但基础设施包括的因素众多,内容难以用某一单一指标涵盖。3.市场规模变量。中国的巨大市场是FDI流入量的重要决定因素。4.生产要素变量。廉价的劳动力也是决定FDI的重要因素之一,虽然Broadman和Sun研究显示劳动力成本与FDI关系并不显著;但我们更倾向与其他学者观点;劳动力成本是FDI的一个重要决定因素。
 本文在结合前人的研究成果之上,决定在引入以上变量的同时,再引入转轨变量等因素进行分析。我们认为改革开放为中国释放了巨大生产力,FDI对转轨变量有着促进作用,与此同时,转轨变量也是影响FDI的关键性因素之一。由于这是中国所特有的一个很重要的决定因素,并且没有进行过定量的分析,所以本文将以其为重点,以期检验,评价和明确这一变量的作用。转轨变量涵盖的范围极为广阔,我们暂时将其界定为市场化程度和对外开放程度两部分,拟用非国有经济与全国经济总量的比值来反映市场化程度,一般而言,非国有经济占经济总量的比重上升反映了非国有企业的发展,间接反映了中国市场竞争程度的加剧,市场化程度也将随之提高。另外选定进出口总额与GDP的比值作为衡量对外开放程度的指标。
三、FDI供需状态的判断
 在分析FDI影响因素时,供需状态的判断是必不可少的环节。邓宁的折衷理论认为FDI主要受到所有权优势,区位优势,内部化优势这三方面因素的影响。其实质表明两组约束变量影响FDI,一组是区位变量,一组是企业变量。企业变量决定FDI供给,区位变量决定FDI需求。根据外国直接投资DS模型,除了供需共同决定均衡状态之外,还有需求决定和供给决定两种均衡状态。只有当东道国处于需求决定状态时,单独分析区位变量对FDI的影响才有意义。目前尚没有实现将需求决定因素和供给决定因素共同纳入同一计量模型中进行分析。
 我国目前处于需求决定状态。由DS模型分析可得:当一国FDI平均规模小于发达国家FDI平均规模时(尤其是相差很大时),该国处于需求决定状态。这一结论与显示情况十分吻合,适合于我国FDI现状。根据统计,今年来外商对华直接投资项目平均规模虽然有所扩大,但均没有超过300万美元,远远小于发达国家的1730万美元,因此,不难推断我国处于需求决定状态,单独分析区位变量对我国FDI的影响是有意义的。
 
 四、计量模型与计算
 本文主要是采用时间序列分析法,对统计数据进行回归分析。
 1.解释变量与被解释变量的选取:
 解释变量包括:(1)市场规模变量G。中国巨大的市场是外资进入中国的重要决定因素,我门以GDP来作为衡量市场规模的指标。
 (2)基础设施变量J。良好的基础设施将为外商投资的企业提供极大的方便性。由于基础设施包括因素众多,所以我们决定以第三产业产值/GDP 来反映基础设施的改善程度,综合反映交通,信息,金融等行业的发展水平。
 (3)对外开放程度变量O。外商投资企业一般要求相对自由的资金进出机制,对外开放程度是外商决定是否投资的重要考虑因素。我们采用进出口总额/GDP来衡量。
 (4)政治稳定性Z。以虚拟变量代表政治稳定性。1989-1990取1。其他年份取0。
 (5)劳动力成本,中国与美国平均工资之比L。
 (6)市场化程度,非国有工业产值/全国工业总产值S
 被解释变量为外商对华直接投资额,以F(t)表示。
 2.计量模型
 由于外商的投资一般对于市场规模G,基础设施J,对外开放程度O,劳动力成本L,市场化程度S的反映具有滞后性,我们在这些数据的选用上选择滞后一期的数据,即解释变量选1985-2002年,而被解释变量选1986-2003年,而对于政治的突变具有突发性,且是一个虚拟变量,在1989年和1990年的时候为1,其余时间为0。
 建立的方程模型为:
 LnF(t)=+LnG(t-1)+J(t-1)+O(t-1)+L(t-1)+S(t-1)+ Z+
 注:为随机扰动项
 3.回归分析
从经济意义上,理论上看F与G,J,S,O呈正相关的关系,F与Z,L呈负相关的关系。为充分论证各决定因素的重要性,在这里运用普通最小二乘法,反复多次逐步回归分析,现将步骤介绍如下:
(1)用OLS法对方程进行回归得:
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:26
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -16.21292 2.407352 -6.734751 0.0000
LG(-1) 1.470648 0.485863 3.026876 0.0115
J(-1) 28.02924 7.426687 3.774124 0.0031
L(-1) -109.3987 31.76132 -3.444399 0.0055
O(-1) 6.609564 2.692388 2.454908 0.0320
S(-1) 1.350569 1.297671 1.040763 0.3203
Z -0.662510 0.266863 -2.482583 0.0304
R-squared 0.966771     Mean dependent var 5.705191
Adjusted R-squared 0.948646     S.D. dependent var 1.303403
S.E. of regression 0.295370     Akaike info criterion 0.684122
Sum squared resid 0.959675     Schwarz criterion 1.030378
Log likelihood 0.842901     F-statistic 53.33934
Durbin-Watson stat 1.970662     Prob(F-statistic) 0.000000

 (2)多重共线性的检验,建立简单相关系数矩阵得:
 
 LG(-1) J(-1) O(-1) L(-1) S(-1) Z
LG(-1)  1.000000  0.608572  0.880128  0.954821  0.743405 -0.343923
J(-1)  0.608572  1.000000  0.671687  0.566264  0.209888 -0.127174
O(-1)  0.880128  0.671687  1.000000  0.874471  0.639632 -0.437741
L(-1)  0.954821  0.566264  0.874471  1.000000  0.614278 -0.333881
S(-1)  0.743405  0.209888  0.639632  0.614278  1.000000 -0.246014
Z -0.343923 -0.127174 -0.437741 -0.333881 -0.246014  1.000000
 
 我们可以从矩阵中可以看出LG(-1)与除Z之外其余的解释变量相关系数较大,说明他们之间可能存在多重共线性。同时用各个解释变量对其余解释变量进行辅助回归,发现LG(-1)与其它解释变量之间可能存在多重共线性。=0.970092,F=77.84503>F0.05(5,12)=3.11见下表。
Dependent Variable: LG(-1)
Method: Least Squares
Date: 06/05/05   Time: 13:42
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C 3.670127 0.960909 3.819434 0.0024
O(-1) -1.397913 1.547943 -0.903078 0.3843
J(-1) 9.229666 3.517353 2.624038 0.0222
L(-1) 58.72518 8.290088 7.083783 0.0000
S(-1) 2.092565 0.479118 4.367538 0.0009
Z -0.127387 0.154233 -0.825940 0.4250
R-squared 0.970092     Mean dependent var 8.366659
Adjusted R-squared 0.957630     S.D. dependent var 0.852571
S.E. of regression 0.175493     Akaike info criterion -0.381228
Sum squared resid 0.369575     Schwarz criterion -0.084438
Log likelihood 9.431056     F-statistic 77.84503
Durbin-Watson stat 1.238111     Prob(F-statistic) 0.000000
 将LG(-1)变量舍去则得到如下结果:
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 12:46
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -10.81545 2.096345 -5.159195 0.0002
O(-1) 4.553727 3.377035 1.348439 0.2024
J(-1) 41.60283 7.673555 5.421585 0.0002
S(-1) 4.427995 1.045257 4.236276 0.0012
Z -0.849852 0.336479 -2.525718 0.0266
L(-1) -23.03460 18.08589 -1.273623 0.2269
R-squared 0.939094     Mean dependent var 5.705191
Adjusted R-squared 0.913717     S.D. dependent var 1.303403
S.E. of regression 0.382861     Akaike info criterion 1.178914
Sum squared resid 1.758994     Schwarz criterion 1.475705
Log likelihood -4.610228     F-statistic 37.00519
Durbin-Watson stat 1.833007     Prob(F-statistic) 0.000001
 发现O(-1)及L(-1)变量t检验均变得不显著,综合考虑决定保留变量LG(-1)。
(3)异方差检验
ARCH Test:
F-statistic 0.735350     Probability 0.552465
Obs*R-squared 2.505726     Probability 0.474257
    
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 06/05/05   Time: 15:46
Sample(adjusted): 1989 2003
Included observations: 15 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C 0.098454 0.039857 2.470198 0.0311
RESID^2(-1) -0.361053 0.285484 -1.264708 0.2321
RESID^2(-2) -0.271544 0.287482 -0.944558 0.3652
RESID^2(-3) 0.042773 0.291621 0.146672 0.8860
R-squared 0.167048     Mean dependent var 0.062511
Adjusted R-squared -0.060120     S.D. dependent var 0.072515
S.E. of regression 0.074663     Akaike info criterion -2.128479
Sum squared resid 0.061321     Schwarz criterion -1.939666
Log likelihood 19.96360     F-statistic 0.735350
Durbin-Watson stat 2.097216     Prob(F-statistic) 0.552465

对方程进行ARCH检验,(n-p)*R2=2.505726,查卡方分布表,给定显著性水平0.05,得临界值7.81。因为2.505726<7.81,所以没有异方差。
(4)自相关性检验

 以上是残差项得散点图,从图中看不出有自相关性。
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:26
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C -16.21292 2.407352 -6.734751 0.0000
LG(-1) 1.470648 0.485863 3.026876 0.0115
J(-1) 28.02924 7.426687 3.774124 0.0031
L(-1) -109.3987 31.76132 -3.444399 0.0055
O(-1) 6.609564 2.692388 2.454908 0.0320
S(-1) 1.350569 1.297671 1.040763 0.3203
Z -0.662510 0.266863 -2.482583 0.0304
R-squared 0.966771 Mean dependent var 5.705191
Adjusted R-squared 0.948646 S.D. dependent var 1.303403
S.E. of regression 0.295370 Akaike info criterion 0.684122
Sum squared resid 0.959675 Schwarz criterion 1.030378
Log likelihood 0.842901 F-statistic 53.33934
Durbin-Watson stat 1.970662 Prob(F-statistic) 0.000000
 
 DW=1.970662,给定显著性水平=0.05,查Durbin-Watson表,n=18,k=6,得下限临界值=0.603,=2.257,因为DW统计量落在与之间,所以不能判断自相关性。
 五﹑结论与政策建议
1.结论的经济意义分析
 (1)GDP 与FDI 之间呈现正相关关系。与预测相一致,显著性很高,在95%的概率水平下显著。GDP 指标不仅代表了市场规模, 而且还能反映其他经济含义。GDP 大,说明盈利机会大。FDI 的主要目标之一是为了占领人均消费水平虽低但总量庞大的中国国内市场,中国的市场规模和经济的高速增长是FDI 的一个重要决定因素。近十年,中国平均每年的GDP增长都在7%以上,这是吸引外资的一个重要因素。即使在中国国内不同区域之间这种相关性也有很大体现,沿海发达地区集中了大部分的外资。
 (2)基础设施变量J与FDI呈正相关关系,且显著性很高。这说明交通、通讯等服务业和基础设施是外商对华直接投资的重要决定因素。中国西部地区之所以对外资吸引力不够,很大部分原因就是因为其基础设施薄弱。
 (3)对外开放程度变量O与FDI之间呈现正相关关系。中国的对外开放显然是FDI的重要决定因素。这一结论与传统的关税壁垒越高,外资流入越多的经典理论观点相左。由此可见,经典理论的观点可能并不适用于发展中国家。
 (4)政治稳定性Z与FDI 之间呈现负相关,显著水平较高。可以认为政治稳定性是FD I的必不可少的前提条件。
 (5)劳动力成本与FDI呈负相关关系,中国的劳动力成本远远低于西方发达国家,降低了生产成本,获得的利润增加。尽管有些相关文章认为劳动力成本与FDI关系相对并不显著,但是我们的回归说明了它们有很大的相关性。外商在华投资,有很大一部分是因为劳动力资源的丰富,而且价格低廉。
 (6)市场化程度与FD I呈正相关关系。有的文章采用的是广告营业额/GDP来说明市场化程度,我们认为该指标不能完全反映经济体制的变化以及国民市场化意识的变化。我们采用非国有工业产值/全国工业总产值S。
2.政策建议
 从我们的回归结果可以看出对外开放程度、基础设施、市场规模、劳动力资源对吸引外商的投资作用极大。
 由于这几个是关键的决定因素,所以伴随着中国市场化程度的逐步完全,在未来几年来,这些转轨变量变化幅度将逐步减小,所引起的FDI增量将会减少。政府必须面对现实,从关注FDI的量到注重FDI的质。
 中国已经走过了招商引资的最高峰时期。预计未来几年内增幅会适度放缓。我们所应该关注的是如何更合理、有效的利用外资,以及其在不同区域、行业上的配置。如何解决FDI在区域分配不均衡,不能仅仅只依靠外资政策倾斜,关键应在于推动落后地区的改革开放及市场化进程,因为从本文分析来看,转轨变量是影响FDI的决定因素。本文虽然是对整个中国的FDI分析,但是对推动落后地区吸引FDI也具有一定的参考意义。

 

[参考文献]
魏巍贤 外商在中国直接投资的决定因素分析 预测,1997(3)
鲁明泓 外国直接投资区域分布与中国投资环境评估 经济研究,1997(12)
崔新健 外国直接投资宏观理论:DS模型 外国经济与管理 2003(4)
郭惠明 近年来外商直接投资的特点和我国的对策 国际关系学院学报 1997(4)
中国统计年鉴 2004
Statistical Abstract of the United States

附录
逐步回归过程
 从经济意义上,理论上看F与G,J,S,O呈正相关的关系,F与Z,L呈负相关的关系。为充分论证各决定因素的重要性,在这里运用普通最小二乘法,反复多次逐步回归分析,现将步骤介绍如下:
用OLS法对方程进行回归得
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:26
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -16.21292 2.407352 -6.734751 0.0000
LG(-1) 1.470648 0.485863 3.026876 0.0115
J(-1) 28.02924 7.426687 3.774124 0.0031
L(-1) -109.3987 31.76132 -3.444399 0.0055
O(-1) 6.609564 2.692388 2.454908 0.0320
S(-1) 1.350569 1.297671 1.040763 0.3203
Z -0.662510 0.266863 -2.482583 0.0304
R-squared 0.966771     Mean dependent var 5.705191
Adjusted R-squared 0.948646     S.D. dependent var 1.303403
S.E. of regression 0.295370     Akaike info criterion 0.684122
Sum squared resid 0.959675     Schwarz criterion 1.030378
Log likelihood 0.842901     F-statistic 53.33934
Durbin-Watson stat 1.970662     Prob(F-statistic) 0.000000
多重共线性的检验,建立简单相关系数距阵得:
 LG(-1) J(-1) O(-1) L(-1) S(-1) Z
LG(-1)  1.000000  0.608572  0.880128  0.954821  0.743405 -0.343923
J(-1)  0.608572  1.000000  0.671687  0.566264  0.209888 -0.127174
O(-1)  0.880128  0.671687  1.000000  0.874471  0.639632 -0.437741
L(-1)  0.954821  0.566264  0.874471  1.000000  0.614278 -0.333881
S(-1)  0.743405  0.209888  0.639632  0.614278  1.000000 -0.246014
Z -0.343923 -0.127174 -0.437741 -0.333881 -0.246014  1.000000
 我们可以从距阵中可以看出L(-1)与LG(-1)的相关系数较大,说明他们之间可能存在多重共线性。同时,F=53.33934>F0.05(5,12)=4.68,则拒绝原假设,说明回归方程显著,模型拟合优度为R2=0。966771,说明整体上线性回归拟合效果较好,但是S(-1)变量的T值并不显著,综合以上情况,说明解释变量确实存在多重共线性。变量的参数符号符合经济意义。
(3)修正多重共线性:
运用OLS法逐一对各个解释变量进行回归,得到六个回归结果。:
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:37
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -4.999399 1.758890 -2.842361 0.0118
LG(-1) 1.279434 0.209203 6.115763 0.0000
R-squared 0.700389     Mean dependent var 5.705191
Adjusted R-squared 0.681663     S.D. dependent var 1.303403
S.E. of regression 0.735398     Akaike info criterion 2.327629
Sum squared resid 8.652957     Schwarz criterion 2.426559
Log likelihood -18.94866     F-statistic 37.40256
Durbin-Watson stat 0.428165     Prob(F-statistic) 0.000015
2
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:38
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -11.71984 3.494226 -3.354059 0.0040
J(-1) 54.91557 10.99448 4.994829 0.0001
R-squared 0.609264     Mean dependent var 5.705191
Adjusted R-squared 0.584843     S.D. dependent var 1.303403
S.E. of regression 0.839818     Akaike info criterion 2.593177
Sum squared resid 11.28471     Schwarz criterion 2.692107
Log likelihood -21.33859     F-statistic 24.94832
Durbin-Watson stat 0.340532     Prob(F-statistic) 0.000132
3
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:39
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C 0.626476 0.745271 0.840601 0.4130
O(-1) 14.82055 2.125653 6.972233 0.0000
R-squared 0.752368     Mean dependent var 5.705191
Adjusted R-squared 0.736891     S.D. dependent var 1.303403
S.E. of regression 0.668570     Akaike info criterion 2.137087
Sum squared resid 7.151765     Schwarz criterion 2.236017
Log likelihood -17.23378     F-statistic 48.61203
Durbin-Watson stat 0.774405     Prob(F-statistic) 0.000003
4
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:40
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C 3.983757 0.475736 8.373875 0.0000
L(-1) 86.51727 21.16139 4.088449 0.0009
R-squared 0.510934     Mean dependent var 5.705191
Adjusted R-squared 0.480367     S.D. dependent var 1.303403
S.E. of regression 0.939566     Akaike info criterion 2.817641
Sum squared resid 14.12453     Schwarz criterion 2.916571
Log likelihood -23.35877     F-statistic 16.71542
Durbin-Watson stat 0.309931     Prob(F-statistic) 0.000857
5
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:41
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C 2.171105 1.023036 2.122218 0.0498
S(-1) 6.768279 1.906043 3.550958 0.0027
R-squared 0.440741     Mean dependent var 5.705191
Adjusted R-squared 0.405788     S.D. dependent var 1.303403
S.E. of regression 1.004731     Akaike info criterion 2.951755
Sum squared resid 16.15174     Schwarz criterion 3.050686
Log likelihood -24.56580     F-statistic 12.60930
Durbin-Watson stat 0.583499     Prob(F-statistic) 0.002661
6
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:41
Sample: 1985 2003
Included observations: 19
Variable Coefficient Std. Error t-Statistic Prob. 
C 5.797764 0.301435 19.23386 0.0000
Z -1.690564 0.929086 -1.819600 0.0865
R-squared 0.163013     Mean dependent var 5.619810
Adjusted R-squared 0.113778     S.D. dependent var 1.320223
S.E. of regression 1.242849     Akaike info criterion 3.371991
Sum squared resid 26.25947     Schwarz criterion 3.471406
Log likelihood -30.03391     F-statistic 3.310943
Durbin-Watson stat 0.327255     Prob(F-statistic) 0.086476
经过对比分析,选取O(-1)作为回归模型的第一个解释变量,形成一元回归模型,逐步回归,将其余解释变量分别加入模型,得:
1
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:45
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -1.863537 2.096354 -0.888942 0.3881
O(-1) 9.917796 4.395026 2.256595 0.0394
LG(-1) 0.498418 0.393243 1.267456 0.2243
R-squared 0.776323     Mean dependent var 5.705191
Adjusted R-squared 0.746499     S.D. dependent var 1.303403
S.E. of regression 0.656248     Akaike info criterion 2.146457
Sum squared resid 6.459930     Schwarz criterion 2.294852
Log likelihood -16.31811     F-statistic 26.03050
Durbin-Watson stat 0.565378     Prob(F-statistic) 0.000013
2
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:46
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -6.006277 2.768156 -2.169776 0.0465
O(-1) 10.68149 2.500006 4.272587 0.0007
J(-1) 25.37340 10.29401 2.464870 0.0263
R-squared 0.823754     Mean dependent var 5.705191
Adjusted R-squared 0.800255     S.D. dependent var 1.303403
S.E. of regression 0.582528     Akaike info criterion 1.908133
Sum squared resid 5.090083     Schwarz criterion 2.056528
Log likelihood -14.17320     F-statistic 35.05425
Durbin-Watson stat 0.553499     Prob(F-statistic) 0.000002
3
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:47
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C 0.122678 1.035418 0.118481 0.9073
O(-1) 17.59630 4.450980 3.953354 0.0013
L(-1) -22.48567 31.53021 -0.713147 0.4867
R-squared 0.760489     Mean dependent var 5.705191
Adjusted R-squared 0.728554     S.D. dependent var 1.303403
S.E. of regression 0.679079     Akaike info criterion 2.214855
Sum squared resid 6.917234     Schwarz criterion 2.363250
Log likelihood -16.93369     F-statistic 23.81377
Durbin-Watson stat 0.999078     Prob(F-statistic) 0.000022
4
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:48
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C 0.335145 0.779884 0.429737 0.6735
O(-1) 12.80311 2.737445 4.677029 0.0003
S(-1) 1.881952 1.633363 1.152195 0.2673
R-squared 0.772502     Mean dependent var 5.705191
Adjusted R-squared 0.742169     S.D. dependent var 1.303403
S.E. of regression 0.661829     Akaike info criterion 2.163394
Sum squared resid 6.570272     Schwarz criterion 2.311789
Log likelihood -16.47054     F-statistic 25.46739
Durbin-Watson stat 0.849920     Prob(F-statistic) 0.000015
5
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:49
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C 0.873548 0.872065 1.001700 0.3324
O(-1) 14.20679 2.414747 5.883347 0.0000
Z -0.330746 0.569622 -0.580641 0.5701
R-squared 0.757812     Mean dependent var 5.705191
Adjusted R-squared 0.725520     S.D. dependent var 1.303403
S.E. of regression 0.682864     Akaike info criterion 2.225970
Sum squared resid 6.994553     Schwarz criterion 2.374366
Log likelihood -17.03373     F-statistic 23.46763
Durbin-Watson stat 0.801207     Prob(F-statistic) 0.000024
从以上可知,选取J(-1)作为第二个解释变量,形成二员回归模型,再将剩下的解释变量分别加入模型中,有:
1
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:51
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -8.114893 3.121434 -2.599732 0.0210
O(-1) 6.295272 4.076360 1.544337 0.1448
J(-1) 24.70662 10.04206 2.460313 0.0275
LG(-1) 0.456964 0.340524 1.341945 0.2010
R-squared 0.843841     Mean dependent var 5.705191
Adjusted R-squared 0.810378     S.D. dependent var 1.303403
S.E. of regression 0.567574     Akaike info criterion 1.898240
Sum squared resid 4.509968     Schwarz criterion 2.096100
Log likelihood -13.08416     F-statistic 25.21742
Durbin-Watson stat 0.413975     Prob(F-statistic) 0.000007
2
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:53
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -6.314892 2.856581 -2.210647 0.0442
O(-1) 13.04974 4.334607 3.010595 0.0094
J(-1) 24.95685 10.50410 2.375915 0.0323
L(-1) -18.63420 27.59925 -0.675170 0.5106
R-squared 0.829312     Mean dependent var 5.705191
Adjusted R-squared 0.792736     S.D. dependent var 1.303403
S.E. of regression 0.593390     Akaike info criterion 1.987202
Sum squared resid 4.929571     Schwarz criterion 2.185062
Log likelihood -13.88482     F-statistic 22.67370
Durbin-Watson stat 0.730221     Prob(F-statistic) 0.000012
3
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:54
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -9.354778 2.474962 -3.779766 0.0020
O(-1) 4.868023 2.763290 1.761677 0.0999
J(-1) 35.92209 8.945399 4.015706 0.0013
S(-1) 3.817839 1.249305 3.055971 0.0085
R-squared 0.894278     Mean dependent var 5.705191
Adjusted R-squared 0.871623     S.D. dependent var 1.303403
S.E. of regression 0.467005     Akaike info criterion 1.508177
Sum squared resid 3.053314     Schwarz criterion 1.706038
Log likelihood -9.573595     F-statistic 39.47431
Durbin-Watson stat 0.955441     Prob(F-statistic) 0.000000
4
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 11:55
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -6.437103 2.706170 -2.378677 0.0322
O(-1) 8.850038 2.766444 3.199067 0.0064
J(-1) 28.94474 10.32559 2.803205 0.0141
Z -0.673004 0.487416 -1.380759 0.1890
R-squared 0.844879     Mean dependent var 5.705191
Adjusted R-squared 0.811638     S.D. dependent var 1.303403
S.E. of regression 0.565686     Akaike info criterion 1.891574
Sum squared resid 4.480004     Schwarz criterion 2.089434
Log likelihood -13.02416     F-statistic 25.41729
Durbin-Watson stat 0.577934     Prob(F-statistic) 0.000006
由于引入S(-1),可以使拟合优度R2提到最高,且其参数统计检验显著,所以选取S(-1)作为第三个解释变量,形成三元回归模型。继续引入其余解释变量得
1
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 12:35
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -9.283145 2.705484 -3.431233 0.0045
O(-1) 5.039091 3.516042 1.433171 0.1754
J(-1) 36.16705 9.727583 3.717990 0.0026
S(-1) 3.890959 1.561089 2.492465 0.0270
LG(-1) -0.029422 0.350111 -0.084036 0.9343
R-squared 0.894336     Mean dependent var 5.705191
Adjusted R-squared 0.861823     S.D. dependent var 1.303403
S.E. of regression 0.484503     Akaike info criterion 1.618745
Sum squared resid 3.051656     Schwarz criterion 1.866071
Log likelihood -9.568707     F-statistic 27.50774
Durbin-Watson stat 0.981730     Prob(F-statistic) 0.000003
2
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 12:37
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -10.01290 2.463814 -4.063983 0.0013
O(-1) 8.110270 3.649665 2.222196 0.0446
J(-1) 35.89843 8.719926 4.116828 0.0012
S(-1) 4.036911 1.229128 3.284372 0.0059
L(-1) -28.13582 21.37012 -1.316596 0.2107
R-squared 0.906717     Mean dependent var 5.705191
Adjusted R-squared 0.878014     S.D. dependent var 1.303403
S.E. of regression 0.455233     Akaike info criterion 1.494119
Sum squared resid 2.694084     Schwarz criterion 1.741444
Log likelihood -8.447071     F-statistic 31.59006
Durbin-Watson stat 1.403367     Prob(F-statistic) 0.000001
3
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 12:38
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -10.32857 2.109937 -4.895202 0.0003
O(-1) 1.732146 2.609074 0.663893 0.5184
J(-1) 41.94319 7.850253 5.342909 0.0001
S(-1) 4.272902 1.062689 4.020840 0.0015
Z -0.897709 0.342282 -2.622719 0.0211
R-squared 0.930861     Mean dependent var 5.705191
Adjusted R-squared 0.909588     S.D. dependent var 1.303403
S.E. of regression 0.391915     Akaike info criterion 1.194591
Sum squared resid 1.996769     Schwarz criterion 1.441917
Log likelihood -5.751319     F-statistic 43.75697
Durbin-Watson stat 1.336548     Prob(F-statistic) 0.000000
选取Z作为第四个解释变量,再引入其他解释变量得:
1
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 12:45
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -10.24908 2.308665 -4.439395 0.0008
O(-1) 1.921821 3.206627 0.599328 0.5601
J(-1) 42.21686 8.530111 4.949157 0.0003
S(-1) 4.354327 1.326446 3.282702 0.0065
Z -0.897885 0.356079 -2.521592 0.0268
LG(-1) -0.032728 0.294621 -0.111085 0.9134
R-squared 0.930932     Mean dependent var 5.705191
Adjusted R-squared 0.902154     S.D. dependent var 1.303403
S.E. of regression 0.407709     Akaike info criterion 1.304674
Sum squared resid 1.994717     Schwarz criterion 1.601465
Log likelihood -5.742069     F-statistic 32.34853
Durbin-Watson stat 1.377885     Prob(F-statistic) 0.000001
2
Dependent Variable: LF
Method: Least Squares
Date: 06/05/05   Time: 12:46
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -10.81545 2.096345 -5.159195 0.0002
O(-1) 4.553727 3.377035 1.348439 0.2024
J(-1) 41.60283 7.673555 5.421585 0.0002
S(-1) 4.427995 1.045257 4.236276 0.0012
Z -0.849852 0.336479 -2.525718 0.0266
L(-1) -23.03460 18.08589 -1.273623 0.2269
R-squared 0.939094     Mean dependent var 5.705191
Adjusted R-squared 0.913717     S.D. dependent var 1.303403
S.E. of regression 0.382861     Akaike info criterion 1.178914
Sum squared resid 1.758994     Schwarz criterion 1.475705
Log likelihood -4.610228     F-statistic 37.00519
Durbin-Watson stat 1.833007     Prob(F-statistic) 0.000001
最后发现舍掉任何一个变量都不太合适,决定还是采用原来的模型。

辅助回归过程
Dependent Variable: O(-1)
Method: Least Squares
Date: 06/05/05   Time: 13:41
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -0.031771 0.257951 -0.123168 0.9040
LG(-1) -0.045523 0.050409 -0.903078 0.3843
J(-1) 1.659298 0.636102 2.608540 0.0229
L(-1) 5.963120 2.938304 2.029443 0.0652
S(-1) 0.220515 0.123719 1.782392 0.1000
Z -0.044701 0.025538 -1.750403 0.1055
R-squared 0.878340     Mean dependent var 0.342681
Adjusted R-squared 0.827648     S.D. dependent var 0.076283
S.E. of regression 0.031669     Akaike info criterion -3.805741
Sum squared resid 0.012035     Schwarz criterion -3.508951
Log likelihood 40.25167     F-statistic 17.32711
Durbin-Watson stat 1.714226     Prob(F-statistic) 0.000040

Dependent Variable: LG(-1)
Method: Least Squares
Date: 06/05/05   Time: 13:42
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C 3.670127 0.960909 3.819434 0.0024
O(-1) -1.397913 1.547943 -0.903078 0.3843
J(-1) 9.229666 3.517353 2.624038 0.0222
L(-1) 58.72518 8.290088 7.083783 0.0000
S(-1) 2.092565 0.479118 4.367538 0.0009
Z -0.127387 0.154233 -0.825940 0.4250
R-squared 0.970092     Mean dependent var 8.366659
Adjusted R-squared 0.957630     S.D. dependent var 0.852571
S.E. of regression 0.175493     Akaike info criterion -0.381228
Sum squared resid 0.369575     Schwarz criterion -0.084438
Log likelihood 9.431056     F-statistic 77.84503
Durbin-Watson stat 1.238111     Prob(F-statistic) 0.000000
F=77.84503>=3.11,而=0.970092接近于1,故有可能存在多重共线性。
                                                                                   
Dependent Variable: J(-1)
Method: Least Squares
Date: 06/05/05   Time: 13:44
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C 0.019248 0.093409 0.206058 0.8402
LG(-1) 0.039502 0.015054 2.624038 0.0222
O(-1) 0.218077 0.083601 2.608540 0.0229
L(-1) -2.371943 1.027278 -2.308959 0.0396
S(-1) -0.117689 0.037283 -3.156631 0.0083
Z 0.013233 0.009644 1.372111 0.1951
R-squared 0.728906     Mean dependent var 0.317306
Adjusted R-squared 0.615950     S.D. dependent var 0.018526
S.E. of regression 0.011481     Akaike info criterion -5.835044
Sum squared resid 0.001582     Schwarz criterion -5.538253
Log likelihood 58.51540     F-statistic 6.453012
Durbin-Watson stat 1.363764     Prob(F-statistic) 0.003917
 
Dependent Variable: L(-1)
Method: Least Squares
Date: 06/05/05   Time: 13:46
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -0.054515 0.015202 -3.586134 0.0037
J(-1) -0.129687 0.056167 -2.308959 0.0396
LG(-1) 0.013742 0.001940 7.083783 0.0000
O(-1) 0.042850 0.021114 2.029443 0.0652
S(-1) -0.027457 0.008734 -3.143670 0.0085
Z 0.002152 0.002345 0.917648 0.3769
R-squared 0.956130     Mean dependent var 0.019897
Adjusted R-squared 0.937851     S.D. dependent var 0.010769
S.E. of regression 0.002685     Akaike info criterion -8.741383
Sum squared resid 8.65E-05     Schwarz criterion -8.444592
Log likelihood 84.67244     F-statistic 52.30698
Durbin-Watson stat 1.036968     Prob(F-statistic) 0.000000

Dependent Variable: S(-1)
Method: Least Squares
Date: 06/05/05   Time: 13:48
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C -0.713245 0.494368 -1.442741 0.1747
J(-1) -3.854743 1.221157 -3.156631 0.0083
LG(-1) 0.293344 0.067165 4.367538 0.0009
O(-1) 0.949258 0.532575 1.782392 0.1000
L(-1) -16.44829 5.232193 -3.143670 0.0085
Z 0.055783 0.057140 0.976256 0.3482
R-squared 0.813548     Mean dependent var 0.522154
Adjusted R-squared 0.735859     S.D. dependent var 0.127848
S.E. of regression 0.065707     Akaike info criterion -2.346027
Sum squared resid 0.051809     Schwarz criterion -2.049236
Log likelihood 27.11424     F-statistic 10.47191
Durbin-Watson stat 1.907247     Prob(F-statistic) 0.000475

Dependent Variable: Z
Method: Least Squares
Date: 06/05/05   Time: 13:49
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. 
C 0.656185 2.597218 0.252649 0.8048
J(-1) 10.24847 7.469125 1.372111 0.1951
LG(-1) -0.422257 0.511244 -0.825940 0.4250
O(-1) -4.550070 2.599442 -1.750403 0.1055
L(-1) 30.47674 33.21179 0.917648 0.3769
S(-1) 1.319026 1.351106 0.976256 0.3482
R-squared 0.310909     Mean dependent var 0.111111
Adjusted R-squared 0.023788     S.D. dependent var 0.323381
S.E. of regression 0.319511     Akaike info criterion 0.817154
Sum squared resid 1.225051     Schwarz criterion 1.113945
Log likelihood -1.354388     F-statistic 1.082849
Durbin-Watson stat 1.452803     Prob(F-statistic) 0.417632

外国对华直接投资决定因素分析相关范文
上一篇:我国当前的产业结构与劳动力结构.. 下一篇:四川省农业生产函数建立与分析
点击查看关于 外国 对华 直接 投资 决定 因素 分析 的相关范文题目 【返回顶部】
精彩推荐
电气工程自动化原创范文  电子商务原创文章范文
人力资源专业原创文章范文 土木工程原创文章范文
工商管理专业原创范文    药学专业原创范文
汉语言文学专业原创范文  会计专业原创文章范文
计算机技术原创文章范文  金融学原创文章范文
法学专业原创文章范文   市场营销专业原创范文
信息管理专业原创文章范文 学前教育专业原创范文
公共事业管理专业原创范文 英语专业原创范文
教育管理专业原创范文   行政管理专业原创范文
热门范文

关于我们 | 联系方式 | 范文说明 | 网站地图 | 免费获取 | 钻石会员 | 硕士文章范文


范文同学网提供文档范文,原创文章范文,网站永久域名www.lunwentongxue.com ,lunwentongxue-范文同学网拼音首字母组合

本站部分文章来自网友投稿上传,如发现侵犯了您的版权,请联系指出,本站及时确认并删除  E-mail: 17304545@qq.com

Copyright@ 2009-2024 范文同学网 版权所有