网站地图
范文同学网


自动化 模具 机械 电子 通信 动画 英语范文 工程管理 金融范文 旅游管理 工业工程 生物工程 给排水范文 西门子PLC 历史学 三菱PLC
单片机 财务 会计 法律 行政 物理 物流范文 电子商务 制药工程 包装工程 土木工程 材料科学 汉语言范文 欧姆龙PLC 电压表 松下PLC
计算机 化工 数电 工商 食品 德语 国贸范文 人力资源 教育管理 交通工程 市场营销 印刷工程 机电一体化 数控范文 变电站 文化产业

  • 网站首页|
  • 文档范文|
  • 人工降重|
  • 职称文章发表|
  • 合作期刊|
  • 范文下载|
  • 计算机范文|
  • 外文翻译|
  • 免费范文|
  • 原创范文|
  • 开题报告

联系方式

当前位置:范文同学网 -> 免费范文 -> 经济学范文 -> 店铺租金的确定模型
金融文章范文| 财务管理| 会计专业| 国贸范文| 市场营销范文| 电子商务范文| 财务会计范文| 电子商务| 会计范文| 财务范文| 金融范文| 电子商务范文| 经济范文| 营销范文
·电气自动化原创文章范文 ·学前教育专业原创文章范文 ·国际经济贸易原创文章范文 ·药学专业原创文章范文 ·英语专业原创文章范文 ·公共事业管理原创文章范文
·金融专业原创文章范文 ·广播电视编导原创文章范文 ·电子商务专业原创文章范文 ·法律专业原创文章范文 ·工商管理原创文章范文 ·汉语言文学原创文章范文
·人力资源管理原创文章范文 ·摄影专业原创文章范文 ·心理学专业原创文章范文 ·教育管理原创文章范文 ·市场营销原创文章范文 ·计算机专业原创文章范文
·物流管理专业原创文章范文 ·小学教育专业原创文章范文 ·行政管理专业原创文章范文 ·土木工程管理原创文章范文 ·财务会计专业原创文章范文 ·信息管理信息系统原创范文
·新闻学专业原创文章范文 ·眼视光技术原创文章范文 ·播音与主持原创文章范文 ·广告学专业原创文章范文 ·表演专业原创文章范文 ·动画专业原创文章范文
·视觉传达设计原创文章范文 ·数控技术专业原创文章范文 ·录音艺术原创文章范文 ·光机电应用技术原创范文 ·机电一体化原创文章范文 ·印刷技术专业原创文章范文
·动漫设计与制作原创范文 ·软件技术专业原创文章范文 ·书法学专业原创文章范文 ·应用电子技术原创文章范文 ·电子信息工程技术原创范文 ·机械专业原创文章范文
·酒店管理专业原创文章范文 ·旅游管理专业原创文章范文 ·文化产业管理专业原创范文 ·体育教育专业原创文章范文 ·通信工程专业原创文章范文 ·护理专业原创文章范文

原创文档范文点击进入 → 金融专业原创文档范文       现成文档范文点击进入 → 金融专业文档范文

店铺租金的确定模型

本文ID:LW8612 ¥
店铺租金的确定模型 某商人欲在某火车站附近经营一店铺,委托本小组对相关情况进行调查。经过数月的资料收集和整理,我们的调查成果如下: 进出车站的乘客为主要服务对象的10家便利店的数据。 Y是日均销售额,X1为店铺面积,X2是店铺距车站的距离,X3为店员人数,X4为店铺日租金。 具体数据如下表: 店铺代码日均销售..

店铺租金的确定模型

某商人欲在某火车站附近经营一店铺,委托本小组对相关情况进行调查。经过数月的资料收集和整理,我们的调查成果如下:
 
 进出车站的乘客为主要服务对象的10家便利店的数据。
 Y是日均销售额,X1为店铺面积,X2是店铺距车站的距离,X3为店员人数,X4为店铺日租金。
 
 具体数据如下表:
店铺代码 日均销售额(元)Y 店铺面积(m2)X1 离车站距离(100m)X2 店员人数(人)X3 店铺日租金(元)X4
A
B
C
D
E
F
G
H
I
J 4000
4500
8000
6000
5000
2000
1500
9000
3000
7000 60
100
85
50
75
55
70
95
45
65 3
5
2
1
3
4
6
1
3
2 5
7
5
3
5
4
5
6
4
4 600
600
1020
750
750
440
280
1425
450
780
 数据来源:www.sina.com.cn
 
 为了考察店铺面积、离车站距离、店员人数和日租金对日销售额的影响,我们首先做Y关于X1、X2、X3、X4的回归,即建立如下回归模型:
Y=C+β1 X1+β2 X2+β3 X3+β4 X4
得回归结果如下表:
 
 
Dependent Variable: Y
Method: Least Squares
Date: 12/14/03   Time: 17:51
Sample: 1 10
Included observations: 10
Variable Coefficient Std. Error t-Statistic Prob. 
C 4815.267 1536.418 3.134087 0.0258
X1 128.1930 39.79796 3.221096 0.0234
X2 -1494.966 513.4078 -2.911848 0.0333
X3 -619.1674 472.6664 -1.309946 0.2472
X4 -1.877208 2.938471 -0.638838 0.5510
R-squared 0.970270     Mean dependent var 5000.000
Adjusted R-squared 0.946486     S.D. dependent var 2505.549
S.E. of regression 579.6124     Akaike info criterion 15.86945
Sum squared resid 1679752.     Schwarz criterion 16.02074
Log likelihood -74.34724     F-statistic 40.79489
Durbin-Watson stat 1.407218     Prob(F-statistic) 0.000522

 从回归结果来看, R2接近于1,整个方程的拟合优度很高,F>F0.05(4,5)=5.19,变量X3、X4对应的偏回归系数之t值小于2,而且X3、X4的符号与经济意义相悖,该模型明显存在多重共线性,回归结果不显著,回归方程不能投入使用。
 
 由于变量较多,采用逐步回归法来修正模型。
 用Y对各个变量单独进行回归:
 
 对X1,有:
 
Dependent Variable: Y
Method: Least Squares
Date: 12/14/03   Time: 20:17
Sample: 1 10
Included observations: 10
Variable Coefficient Std. Error t-Statistic Prob. 
C 444.4444 2988.555 0.148716 0.8855
X1 65.07937 41.38415 1.572567 0.1545
R-squared 0.236129     Mean dependent var 5000.000
Adjusted R-squared 0.140645     S.D. dependent var 2505.549
S.E. of regression 2322.680     Akaike info criterion 18.51569
Sum squared resid 43158730     Schwarz criterion 18.57620
Log likelihood -90.57844     F-statistic 2.472968
Durbin-Watson stat 1.988381     Prob(F-statistic) 0.154464
 
 对X2,有:

Dependent Variable: Y
Method: Least Squares
Date: 12/14/03   Time: 20:20
Sample: 1 10
Included observations: 10
Variable Coefficient Std. Error t-Statistic Prob. 
C 8687.500 1096.232 7.924871 0.0000
X2 -1229.167 324.6760 -3.785826 0.0053
R-squared 0.641777     Mean dependent var 5000.000
Adjusted R-squared 0.596999     S.D. dependent var 2505.549
S.E. of regression 1590.581     Akaike info criterion 17.75844
Sum squared resid 20239583     Schwarz criterion 17.81896
Log likelihood -86.79221     F-statistic 14.33248
Durbin-Watson stat 2.488527     Prob(F-statistic) 0.005344


 对X3,有:
 
Dependent Variable: Y
Method: Least Squares
Date: 12/14/03   Time: 20:28
Sample: 1 10
Included observations: 10
Variable Coefficient Std. Error t-Statistic Prob. 
C 3344.828 3791.325 0.882232 0.4034
X3 344.8276 770.6964 0.447423 0.6664
R-squared 0.024413     Mean dependent var 5000.000
Adjusted R-squared -0.097536     S.D. dependent var 2505.549
S.E. of regression 2624.897     Akaike info criterion 18.76033
Sum squared resid 55120690     Schwarz criterion 18.82084
Log likelihood -91.80164     F-statistic 0.200188
Durbin-Watson stat 2.273575     Prob(F-statistic) 0.666436


 对X4,有:
 
Dependent Variable: Y
Method: Least Squares
Date: 12/14/03   Time: 20:30
Sample: 1 10
Included observations: 10
Variable Coefficient Std. Error t-Statistic Prob. 
C -124.4556 691.7552 -0.179913 0.8617
X4 7.222630 0.893132 8.086854 0.0000
R-squared 0.891004     Mean dependent var 5000.000
Adjusted R-squared 0.877380     S.D. dependent var 2505.549
S.E. of regression 877.3734     Akaike info criterion 16.56860
Sum squared resid 6158272.     Schwarz criterion 16.62912
Log likelihood -80.84299     F-statistic 65.39721
Durbin-Watson stat 1.099477     Prob(F-statistic) 0.000040
 
 从上面的回归结果可以看到,Y对X2的回归拟合最好,故选择该回归式为基本回归表达式。现在分别加入X1、X3、X4回归结果如下:
 
 加入X1,有:
 
 
Dependent Variable: Y
Method: Least Squares
Date: 12/14/03   Time: 21:21
Sample: 1 10
Included observations: 10
Variable Coefficient Std. Error t-Statistic Prob. 
C 3641.214 817.1938 4.455753 0.0030
X1 75.45849 10.58869 7.126326 0.0002
X2 -1307.769 121.3087 -10.78050 0.0000
R-squared 0.956605     Mean dependent var 5000.000
Adjusted R-squared 0.944206     S.D. dependent var 2505.549
S.E. of regression 591.8273     Akaike info criterion 15.84763
Sum squared resid 2451817.     Schwarz criterion 15.93841
Log likelihood -76.23816     F-statistic 77.15446
Durbin-Watson stat 1.809788     Prob(F-statistic) 0.000017
 
 可见,加入X1效果较好,这样回归式中就有X1、X2两个变量了。在此基础上继续加入其他变量。
 
 加入X3,有:
 
Dependent Variable: Y
Method: Least Squares
Date: 12/14/03   Time: 21:26
Sample: 1 10
Included observations: 10
Variable Coefficient Std. Error t-Statistic Prob. 
C 3993.580 797.8410 5.005484 0.0024
X1 109.3747 25.40691 4.304920 0.0051
X2 -1181.338 142.6370 -8.282130 0.0002
X3 -647.0407 446.8316 -1.448064 0.1978
R-squared 0.967843     Mean dependent var 5000.000
Adjusted R-squared 0.951765     S.D. dependent var 2505.549
S.E. of regression 550.2815     Akaike info criterion 15.74791
Sum squared resid 1816859.     Schwarz criterion 15.86895
Log likelihood -74.73956     F-statistic 60.19526
Durbin-Watson stat 1.281362     Prob(F-statistic) 0.000072
 
 可以看出,加入了X3以后引起了多重共线性,故剔除。
 
 现在加入X4,回归结果如下:
 
Dependent Variable: Y
Method: Least Squares
Date: 12/14/03   Time: 21:29
Sample: 1 10
Included observations: 10
Variable Coefficient Std. Error t-Statistic Prob. 
C 4636.482 1619.077 2.863658 0.0287
X1 99.57632 35.19507 2.829269 0.0300
X2 -1674.283 523.5131 -3.198167 0.0186
X4 -2.232526 3.095576 -0.721199 0.4979
R-squared 0.960067     Mean dependent var 5000.000
Adjusted R-squared 0.940100     S.D. dependent var 2505.549
S.E. of regression 613.2195     Akaike info criterion 15.96450
Sum squared resid 2256229.     Schwarz criterion 16.08553
Log likelihood -75.82249     F-statistic 48.08356
Durbin-Watson stat 1.907328     Prob(F-statistic) 0.000137
 
 同样,X4引起多重共线性,故剔除。
 
 故Y对X1、X2的回归拟合最好,回归表达式应为:
 
Y=3641.214+75.45849X1-1307.769X2
 
 其经济意义为,在其他条件不变时,店铺面积扩大1平方米,日均销售额大约会增加75.5元;店铺如果比现在地址再远离车站100米,日均销售额大约会减少1307.8元。

 由于客户的资金有限,每天能负担的租金为700~800元,因此我们建议在离火车站100米处租赁面积为60平方米左右的店铺,租金大约为750元。这样客户能够获得既定条件下的最大收益。
 
 以上就是我们的分析报告。

店铺租金的确定模型相关范文
上一篇:影响北京市居民消费的因素分析 下一篇:对成都市房地产市场的实证考察
点击查看关于 店铺 租金 确定 模型 的相关范文题目 【返回顶部】
精彩推荐
电气工程自动化原创范文  电子商务原创文章范文
人力资源专业原创文章范文 土木工程原创文章范文
工商管理专业原创范文    药学专业原创范文
汉语言文学专业原创范文  会计专业原创文章范文
计算机技术原创文章范文  金融学原创文章范文
法学专业原创文章范文   市场营销专业原创范文
信息管理专业原创文章范文 学前教育专业原创范文
公共事业管理专业原创范文 英语专业原创范文
教育管理专业原创范文   行政管理专业原创范文
热门范文

关于我们 | 联系方式 | 范文说明 | 网站地图 | 免费获取 | 钻石会员 | 硕士文章范文


范文同学网提供文档范文,原创文章范文,网站永久域名www.lunwentongxue.com ,lunwentongxue-范文同学网拼音首字母组合

本站部分文章来自网友投稿上传,如发现侵犯了您的版权,请联系指出,本站及时确认并删除  E-mail: 17304545@qq.com

Copyright@ 2009-2024 范文同学网 版权所有