网站地图
范文同学网


自动化 模具 机械 电子 通信 动画 英语范文 工程管理 金融范文 旅游管理 工业工程 生物工程 给排水范文 西门子PLC 历史学 三菱PLC
单片机 财务 会计 法律 行政 物理 物流范文 电子商务 制药工程 包装工程 土木工程 材料科学 汉语言范文 欧姆龙PLC 电压表 松下PLC
计算机 化工 数电 工商 食品 德语 国贸范文 人力资源 教育管理 交通工程 市场营销 印刷工程 机电一体化 数控范文 变电站 文化产业

  • 网站首页|
  • 文档范文|
  • 人工降重|
  • 职称文章发表|
  • 合作期刊|
  • 范文下载|
  • 计算机范文|
  • 外文翻译|
  • 免费范文|
  • 原创范文|
  • 开题报告

联系方式

当前位置:范文同学网 -> 免费范文 -> 工程管理范文 -> 机械人提供:基于LV-SVMs 的UUV NARX动态辨识模型(二)
行政管理文档范文| 物流管理文章范文| 人力资源范文| 工商管理范文| 旅游管理| 财管管理范文| 工程管理| 安全管理| 乡镇企业管理| 电视制片管理| 文化产业管理| 物业管理|
工程管理文章范文| 工商管理范文下载| 信息管理范文| 人力资源范文| 酒店管理| 免费物流范文| 工商管理| 行政管理| 物流专业范文| 免费旅游范文| 行政管理范文| 人力资源|
·电气自动化原创文章范文 ·学前教育专业原创文章范文 ·国际经济贸易原创文章范文 ·药学专业原创文章范文 ·英语专业原创文章范文 ·公共事业管理原创文章范文
·金融专业原创文章范文 ·广播电视编导原创文章范文 ·电子商务专业原创文章范文 ·法律专业原创文章范文 ·工商管理原创文章范文 ·汉语言文学原创文章范文
·人力资源管理原创文章范文 ·摄影专业原创文章范文 ·心理学专业原创文章范文 ·教育管理原创文章范文 ·市场营销原创文章范文 ·计算机专业原创文章范文
·物流管理专业原创文章范文 ·小学教育专业原创文章范文 ·行政管理专业原创文章范文 ·土木工程管理原创文章范文 ·财务会计专业原创文章范文 ·信息管理信息系统原创范文
·新闻学专业原创文章范文 ·眼视光技术原创文章范文 ·播音与主持原创文章范文 ·广告学专业原创文章范文 ·表演专业原创文章范文 ·动画专业原创文章范文
·视觉传达设计原创文章范文 ·数控技术专业原创文章范文 ·录音艺术原创文章范文 ·光机电应用技术原创范文 ·机电一体化原创文章范文 ·印刷技术专业原创文章范文
·动漫设计与制作原创范文 ·软件技术专业原创文章范文 ·书法学专业原创文章范文 ·应用电子技术原创文章范文 ·电子信息工程技术原创范文 ·机械专业原创文章范文
·酒店管理专业原创文章范文 ·旅游管理专业原创文章范文 ·文化产业管理专业原创范文 ·体育教育专业原创文章范文 ·通信工程专业原创文章范文 ·护理专业原创文章范文

原创文档范文点击进入 → 土木工程管理原创文档范文   现成文档范文点击进入 → 土木工程管理文档范文

机械人提供:基于LV-SVMs 的UUV NARX动态辨识模型(二)

本文ID:LW6309 ¥
采用LVOSVMs 非线性黑箱建模的方法对UUV 动态系统进行辨识。本文选取对UUV 运动姿态影响最大的两个参数: X Y 平面内的速度v ,及偏航角γ来进行建模辨识。根据现有文献,通过UUV 自带的传感器以及经过初步处理,可以得到与我们需要辨识的两个参数之间存在非线性关系的参数有UUV 的加速度Ûv和UUV 推进器的推力τ ,运用..
采用LVOSVMs 非线性黑箱建模的方法对UUV 动态系统进行辨识。本文选取对UUV 运动姿态影响最大的两个参数: X Y 平面内的速度v ,及偏航角γ来进行建模辨识。根据现有文献,通过UUV 自带的传感器以及经过初步处理,可以得到与我们需要辨识的两个参数之间存在非线性关系的参数有UUV 的加速度Ûv和UUV 推进器的推力τ ,运用这些参数建立UUV的非线性黑箱辨识模型。引入NARX 模型如下:yt = Σni =1ai y t - i + Σmj =1bj f ( ut- j ) + et , (1)
其中yt = ( vt , γt ) 为输出项; f (·) 为一非线性函数, ut - j = ( Ûv t- j ,τt- j ) , yt- i = ( vt- i ,γt- i ) 为输入项; et为误差变量。由第一部分所述的LVOSVMs 原理,令f ( u) = ωTφ( u) + b0 , (2)选择核函数
Ωk , l = K( uk , ul ) = φ( uk ) Tφ( ul ) ,把式(2) 代入式(1)
得yt = Σni =1ai y t - i + Σmj =1bj (ωTφ( u) + b0 ) + et 。(3)
令ωTj = bjωT , d = Σmj = 1bj b0 , 代入式(3) 得yt = Σni = 1ai y t- i + Σmj = 1ωTjφ( u) + d + et 。(4)
 将回归问题转化为优化问题:min J (ωj , e) = 12 Σmj =1ωTjωj +C2 ΣNt = re2t, (5)
 s. t . yt = Σni =1ai y t- i + Σmj = 1ωTj φ( ut- j ) + d + et ,(6)
 ΣNk =1ωTjφ( uk ) = 0 , j = 1 ,2 , ⋯, m (7)
 建立Lagrange 函数:
L (ωj , d , a , e;α,β) = J (ωj , e) - ΣNt = rαt { Σni = 1ai y t - i+ Σmj =1ωTjφ( ut- j ) + d + et - yt }
+ mj =1βj {ωTjφ( uk ) } 。
 根据KKT 条件可得
5L5ωj= 0 →ωj = ΣNt = rαtφ( ut- j ) + Σmj =1βjφ( uk )   j = 1 ,2 , ⋯, m
5L5αi= 0 → ΣNt = rαt y t- i = 0 ,  i = 1 ,2 , ⋯, n
5L5 d= 0 → ΣNt = rαt = 0
5L5et= 0 →αt = Cet ,  t = r , ⋯, N
5L5αt= 0 → Eq. (6)
5L5βj= 0 → Eq. (7)
  综合以上各式得到
0 0 1 T 00 0 Y 0
1 Y T .K + C- 1 I K0
0 0 K0 T ‖Ω‖2F ·Imdaαβ=00y f0
其中 α = [αr ⋯αN ] T ;
β = [β1 ⋯βm ] T ;
a = [ a1 ⋯an ] T ;
y f = [ y r+1 ⋯yN ] T ;
Y =y r- 1 yr ⋯ yN - 1y r- 2 yr- 1 ⋯ yN - 2… … …y r- n y r- n+1 ⋯ yN - n;.Kp , q = Σmj = 1Ωp+ r- j , q+ r- j ;
K0p , q = Σnk = 1Ωk , p- q 。
  通过以上线性方程求得α和d ,代入最小二乘模型即可得基于LVOSVMs 的UUV NARX 动态辩识模型:
f ( vt ,γt ) =αΣK( ut , u) + d
 于是可得如图2 所示的UUV 动态辨识模型的结构原理图。
 图2  UUV 动态辨识模型的结构原理图
4  辨识实例
  为了检验本文所建立的辨识模型,我们设计了一个辨识实例,对上述模型进行了仿真试验。软件采用Matlab 。数据由文献[ 1 ]中的UUV 水动力学方程产生。辨识测度采用如下性能指标:
(1) 辨识误差为1
N ΣNi =1( yi - ^yi ) 2
其中yi 为期望输出, ^yi 为辨识输入。
(2) 训练样本采用在一百个时间单位内采集的数据,如图3 所示。
图3  训练样本
(3) 辨识过程。设置最小二乘支持向量机的参数C 和σ的取值范围。采用两层网格平面优化,根据非线性控制系统特征,在第1 参数优化层中,取
C =[0. 1 ,1 ,10 ,50 ,100 ,500 ,1000 ,2500 ,5000 ,10000 ] ,σ= [0. 1 ,0. 2 ,0. 5 ,1 ,5 ,10 ,15 ,25 ,50 ,100 ] , 即采用10 ×10 网格结构。获得参数对如下: ①对于速度v ,( C,σ) 为(10000 ,5) ; ②对于偏航角γ , ( C,σ) 为(5000 ,10) 。
然后,在第二参数优化层中,以( Ci ,σj ) Emin 为网格平面中心,以( Ci ) Emin 值的±0. 1 倍值为C向扩展网格宽度,以(σj ) Emin的±0. 05 倍值为σ向扩展网格宽度,再次构建10 ×10 网格平面,获得速度v 的最优参数对( Ci ,σj ) Emin为(15000 ,4. 25) ,偏航角γ的最优参数对( Ci ,σj ) Emin为(4500 ,15) 。利用以上最优参数对对速度v 和偏航角γ进行辨识结果如图4 、图5 所示。
 对于速度v 的辨识误差为0. 00213 ,偏航角γ的辨识误差为0. 232 。上述结果表明,基于L SOSVMs
 图4  对速度进行辨识后的结果
 实线为期望输出,虚线为辨识输出
图5  对偏航角进行辨识后的结果
 实线为期望输出,虚线为辨识输出
的UUV 非线性黑箱辨识模型的辨识精度较高,输出的速度v 和偏航角γ与期望输出相比,在不同的状况下都取得了满意的效果,表现出了很好的泛化能力。
5  结语
  UUV 动态控制是保证UUV 能在复杂的水下环境中工作的关键。本文提出了一个基于L SOSVMs 的UUV 非线性黑箱辨识模型,将L SOSVMs应用于UUV 的动态控制辨识中,取得了满意的效果,为今后UUV 的动态控制提供了一定的参考。

首页 上一页 1 2 下一页 尾页 2/2/2

机械人提供:基于LV-SVMs 的UUV NARX动态辨识模型(二)相关范文
上一篇:施工图预算与施工组织设计 下一篇:发展机电一体化的重要性
点击查看关于 机械 提供 基于 LV-SVMs UUV NARX 动态 辨识 模型 的相关范文题目 【返回顶部】
精彩推荐
电气工程自动化原创范文  电子商务原创文章范文
人力资源专业原创文章范文 土木工程原创文章范文
工商管理专业原创范文    药学专业原创范文
汉语言文学专业原创范文  会计专业原创文章范文
计算机技术原创文章范文  金融学原创文章范文
法学专业原创文章范文   市场营销专业原创范文
信息管理专业原创文章范文 学前教育专业原创范文
公共事业管理专业原创范文 英语专业原创范文
教育管理专业原创范文   行政管理专业原创范文
热门范文

关于我们 | 联系方式 | 范文说明 | 网站地图 | 免费获取 | 钻石会员 | 硕士文章范文


范文同学网提供文档范文,原创文章范文,网站永久域名www.lunwentongxue.com ,lunwentongxue-范文同学网拼音首字母组合

本站部分文章来自网友投稿上传,如发现侵犯了您的版权,请联系指出,本站及时确认并删除  E-mail: 17304545@qq.com

Copyright@ 2009-2024 范文同学网 版权所有