网站地图
范文同学网


自动化 模具 机械 电子 通信 动画 英语范文 工程管理 金融范文 旅游管理 工业工程 生物工程 给排水范文 西门子PLC 历史学 三菱PLC
单片机 财务 会计 法律 行政 物理 物流范文 电子商务 制药工程 包装工程 土木工程 材料科学 汉语言范文 欧姆龙PLC 电压表 松下PLC
计算机 化工 数电 工商 食品 德语 国贸范文 人力资源 教育管理 交通工程 市场营销 印刷工程 机电一体化 数控范文 变电站 文化产业

  • 网站首页|
  • 文档范文|
  • 人工降重|
  • 职称文章发表|
  • 合作期刊|
  • 范文下载|
  • 计算机范文|
  • 外文翻译|
  • 免费范文|
  • 原创范文|
  • 开题报告

联系方式

当前位置:范文同学网 -> 免费范文 -> 经济学范文 -> 上市公司财务预警模型设计与分析
金融文章范文| 财务管理| 会计专业| 国贸范文| 市场营销范文| 电子商务范文| 财务会计范文| 电子商务| 会计范文| 财务范文| 金融范文| 电子商务范文| 经济范文| 营销范文
·电气自动化原创文章范文 ·学前教育专业原创文章范文 ·国际经济贸易原创文章范文 ·药学专业原创文章范文 ·英语专业原创文章范文 ·公共事业管理原创文章范文
·金融专业原创文章范文 ·广播电视编导原创文章范文 ·电子商务专业原创文章范文 ·法律专业原创文章范文 ·工商管理原创文章范文 ·汉语言文学原创文章范文
·人力资源管理原创文章范文 ·摄影专业原创文章范文 ·心理学专业原创文章范文 ·教育管理原创文章范文 ·市场营销原创文章范文 ·计算机专业原创文章范文
·物流管理专业原创文章范文 ·小学教育专业原创文章范文 ·行政管理专业原创文章范文 ·土木工程管理原创文章范文 ·财务会计专业原创文章范文 ·信息管理信息系统原创范文
·新闻学专业原创文章范文 ·眼视光技术原创文章范文 ·播音与主持原创文章范文 ·广告学专业原创文章范文 ·表演专业原创文章范文 ·动画专业原创文章范文
·视觉传达设计原创文章范文 ·数控技术专业原创文章范文 ·录音艺术原创文章范文 ·光机电应用技术原创范文 ·机电一体化原创文章范文 ·印刷技术专业原创文章范文
·动漫设计与制作原创范文 ·软件技术专业原创文章范文 ·书法学专业原创文章范文 ·应用电子技术原创文章范文 ·电子信息工程技术原创范文 ·机械专业原创文章范文
·酒店管理专业原创文章范文 ·旅游管理专业原创文章范文 ·文化产业管理专业原创范文 ·体育教育专业原创文章范文 ·通信工程专业原创文章范文 ·护理专业原创文章范文

原创文档范文点击进入 → 金融专业原创文档范文       现成文档范文点击进入 → 金融专业文档范文

上市公司财务预警模型设计与分析

本文ID:LW8665 ¥
上市公司财务预警模型设计与分析 财务预警是以财务会计信息为基础,通过设置并观察一些敏感性预警指标的变化,对企业可能或者将要面临的财务危机实施的实时监控和预测警报。财务预警中的数学模型就是财务预警模型,它是指借助企业财务指标和非财务指标体系,识别企业财务状况的判别模型。 财务预警模型的设计可以有两种..

上市公司财务预警模型设计与分析
 财务预警是以财务会计信息为基础,通过设置并观察一些敏感性预警指标的变化,对企业可能或者将要面临的财务危机实施的实时监控和预测警报。财务预警中的数学模型就是财务预警模型,它是指借助企业财务指标和非财务指标体系,识别企业财务状况的判别模型。
 财务预警模型的设计可以有两种,一种是单变量模型,这就是传统的财务指标分析。对这些指标的分析,能够揭示企业某一方面或几个方面是否存在问题。通过对这些指标的长期观察和分析,能够从一定程度上发现企业是否存在财务危机。但是,这种分析方法有其弊端,这些单个比率都只反映企业风险程度的一个方面,并且当它们彼此不完全一致时,指标的预警作用可能被抵消,因此其有效性受到一定的限制。因此,构建多变量模型就成为必然选择。
 在多变量模型的构建方法上,可以有多元线性判定模型、LOGIT模型、神经网路模型等。结合我们计量课程所学和我们本篇课程范文样本的选取实际情况,我们将选择LOGIT模型来构建我们的这篇文章。
一、理论方法
 应变量y是0~1二元变量,其定义如下:1,该公司为财务困境公司;0,该公司为财务健康公司。通过对n个样本公司的回归分析, ,可以确定每个解释变量的系数。从而可以确定每个公司的,不是观测值,而是每个公司的期望值。
 Logit模型采用的是Logistic概率分布函数,具体公式为 ,其中 ,对于给定的Fij,Pi是第i个企业财务困境的概率。因为这个概率是Logistic概率分布函数曲线下从-∞到Zi之间的面积,所以指标Zi的值越大,第i个公司财务状况陷入困境的概率越大。上式经过数学整理可得,根据样本数据使用最大似然估计法估计出各参数值α,β,可求得第i个公司陷入财务困境的概率。根据配对选取样本的特点,一般假设先验概率为0.5,可以判断Z值大于0.5的公司存在财务危机的可能性比较大,而小于0.5的公司一般认为是财务健康的。
二、解释变量设计
 根据财务指标对公司的财务状况进行预警,一般将财务指标分类为以下几类:盈利能力指标,包括资产净利润率、资产报酬率、净资产报酬率、销售净利率、主营业务利润率、每股收益,根据对指标的分析,一般认为净资产报酬率对盈利能力最具有综合性;变现能力比率,包括流动比率、速动比率、超速动比率;负债比率,有资产负债率、产权比率、有形净值债务率等;资产管理能力指标,有总资产周转率、存货周转率、应收帐款周转率、固定资产周转率等,可选择总资产周转率进入分析;成长能力指标有总资产增长率、主营业务收入增长率、留成利润比、留存收益总资产比、每股净资产等;现金指标,有现金流动负债比、现金债务总额比、销售现金比、全部资产现金回收率等,还有其他的一些指标,如主营业务鲜明程度(主营业务利润/净利润)、现金管理结果变量(经营现金净流量/(总负债-现金))。
 根据以上分析,我们选取了以下指标进入分析:1流动比率,2净资产报酬率、3总资产报酬率、4主营业务利润率、5资产负债率、6长期负债总资产比率、7营运资本与总资产比率、8资产增长率、9主营业务收入增长率、10资产周转率、11流动资产周转率、12现金流动负债比、13现金债务总额比、14销售现金比、15(利润总额+财务费用)/总资产、16主营业务鲜明程度、17现金管理结果变量(经营现金净流量/(总负债-现金)这些指标作为解释变量进入分析。
三、数据的获取
 为了便于数据的获取,我们直接分析上市公司。这些数据都是从CSMAR系列研究数据库中的在我国上海,深圳两个交易所上市交易的上市公司年报财务数据库中选取的。
四、 样本设计
 首先,我们得对有财务危机和没有财务危机得企业进行定义。目前,财务理论界对公司财务危机的定义比较混乱,从上市公司来看,比较适宜的是我国证监会对上市公司的一个规定,就是将ST公司定义为存在财务危机是比较可取的。因此,我们将从数据库中选取连续2003年度和2004年度大概60家ST,与此相配对的是60家非ST的正常公司。经过筛选,将一些数据却是或者异常的公司排除以后,我们得到了34家ST公司样本。然后在60家非ST公司中随机选取了34家公司与之相配对,组成我们的样本数据。具体的样本选取结果如表一所示:
 表一     样本公司
ST公司 非ST公司 ST公司 非ST公司
*ST长风 云南白药 ST寰岛 焦作鑫安
*ST太光 世纪中天 ST吉纸 锦龙股份
ST昆百大 佛山照明 ST天然 锦州六陆
*ST长岭 泰山石油 ST天仪 鲁能
*ST托普 西安民生 ST重实 索芙特
*ST光明 数码网络 *ST长兴 天伦置业
ST圣方 蜀都A ST春都 西安饮食
*ST比特 成都华联 *ST飞彩 燕京啤酒
*ST恒立 四环药业 ST京西 永安林业
*ST兰宝 西安旅游 *ST巨力  东方热电
*ST九化 倍特高新 *ST龙涤 金陵药业
ST博盈 三木集团 *ST闽东 美利纸业
ST菲菲 民族化工 *ST农化 钱江摩托
ST湖山 长春高新 ST商务 数源科技
ST华信 丰乐种业 *ST唐陶 五粮液
ST化工 公用科技 *ST天一 新乡化纤
ST环保 惠天热电 *ST炎黄 扬子石化
五、分析过程及报告
(一)主要解释变量的选取
 通过对以上17个指标的协方差分析,分析结果如表二所示:
表二     17个解释变量的协方差矩阵
 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17
F1 1.76  0.25  0.04  1.13  -0.07  0.00  0.12  0.05  0.25  0.05  0.19  1.41  0.05  0.06  0.04  1.53  0.04
F2 0.25  1.82  0.08  7.67  -0.11  -0.01  0.09  0.07  0.48  0.05  0.14  0.12  0.05  0.09  0.10  1.54  0.06
F3 0.04  0.08  0.02  0.79  -0.02  0.00  0.02  0.02  0.05  0.02  0.05  0.02  0.01  0.01  0.02  0.26  0.01
F4 1.13  7.67  0.79  131.58  -0.79  -0.20  0.44  0.93  7.78  1.01  2.35  0.58  0.21  2.94  0.93  7.86  0.26
F5 -0.07  -0.11  -0.02  -0.79  0.05  0.00  -0.04  -0.01  -0.04  -0.02  -0.06  -0.01  -0.02  0.01  -0.04  -0.10  -0.02
F6 0.00  -0.01  0.00  -0.20  0.00  0.01  0.00  0.00  -0.01  -0.01  0.00  0.01  0.00  0.00  0.00  -0.05  0.00
F7 0.12  0.09  0.02  0.44  -0.04  0.00  0.06  0.02  0.04  0.02  0.01  0.01  0.01  0.00  0.02  0.43  0.01
F8 0.05  0.07  0.02  0.93  -0.01  0.00  0.02  0.04  0.07  0.02  0.05  0.03  0.00  0.02  0.01  0.26  0.00
F9 0.25  0.48  0.05  7.78  -0.04  -0.01  0.04  0.07  0.77  0.10  0.28  0.17  0.02  0.46  0.07  1.04  0.02
F10 0.05  0.05  0.02  1.01  -0.02  -0.01  0.02  0.02  0.10  0.13  0.28  0.02  0.02  0.05  0.01  0.43  0.04
F11 0.19  0.14  0.05  2.35  -0.06  0.00  0.01  0.05  0.28  0.28  1.06  0.25  0.06  0.14  0.06  0.44  0.09
F12 1.41  0.12  0.02  0.58  -0.01  0.01  0.01  0.03  0.17  0.02  0.25  1.37  0.04  0.08  0.02  0.59  0.04
F13 0.05  0.05  0.01  0.21  -0.02  0.00  0.01  0.00  0.02  0.02  0.06  0.04  0.04  0.05  0.02  -0.14  0.04
F14 0.06  0.09  0.01  2.94  0.01  0.00  0.00  0.02  0.46  0.05  0.14  0.08  0.05  0.66  0.03  0.09  0.06
F15 0.04  0.10  0.02  0.93  -0.04  0.00  0.02  0.01  0.07  0.01  0.06  0.02  0.02  0.03  0.17  0.31  0.02
F16 1.53  1.54  0.26  7.86  -0.10  -0.05  0.43  0.26  1.04  0.43  0.44  0.59  -0.14  0.09  0.31  119.61  -0.30
F17 0.04  0.06  0.01  0.26  -0.02  0.00  0.01  0.00  0.02  0.04  0.09  0.04  0.04  0.06  0.02  -0.30  0.23
 我们先来分析主对角线上的数据,从以上协方差矩阵我们可以看出,主对角线上的数据是每个解释变量的方差,。主对角线上有六个数据(表中用绿色背景显示)的方差比较显著。从主成分分析的角度来看,方差越大,其本身数据变动的范围也就越大,那么,它对应变量的贡献就越大,在众多的解释变量当中,就越有可能成为关键的解释变量。从因子分析方法的角度来看,自身方差越大的因子将会成为关键因素,因为它提供的信息越多,本身在所有因子当中的载荷也将更大,越能成为关键的因素。所以,不管是从主成分分析角度,还是因子分析思想的角度来看,以上六个变量将是我们从17个解释变量当中初步选择出来的。
 现在我们再来分析主对角线之外的数据,这些数据是各个变量之间的协方差。我们主要注意已经被初步选取出来的六个指标之间的协方差关系。从表二看出,其中有几个比较大的协方差数据(表二中用黄色背景显示),从中分析出F1、F2、F4与F16的协方差比较显著,F1、F2、F4之间的协方差数据也是比较显著的。变量之间的协方差越大,那么它们之间的相关度可能也就越大,共线程度就越高。在回归分析当中,我们要尽量避免解释变量之间的共线性性。这六个因素对应的指标是:F1:流动比率;F2:净资产报酬率;F4:主营业务利润率;F11:流动资产周转率;F12:现金流动负债比;F16:主营业务鲜明程度。
(二)回归分析
 将以上6个主要因素用于回归估计。我们使用Eviews软件做LOGIT回归,经过反复比较,最后发现由F4、F12、F16作为解释变量进行回归估计得到的回归方程最好,其回归结果如表三:
 表三      回归报告
Dependent Variable: Y
Method: ML - Binary Logit
Date: 06/05/05   Time: 10:39
Sample: 1 68
Included observations: 68
Convergence achieved after 9 iterations
Covariance matrix computed using second derivatives
Variable Coefficient Std. Error z-Statistic Prob. 
F4 -3.135211 1.299228 -2.413134 0.0158
F12 -5.850158 2.767156 -2.114140 0.0345
F16 -0.274522 0.094936 -2.891649 0.0038
Mean dependent var 0.500000     S.D. dependent var 0.503718
S.E. of regression 0.294016     Akaike info criterion 0.663742
Sum squared resid 5.618969     Schwarz criterion 0.761661
Log likelihood -19.56722     Hannan-Quinn criter. 0.702541
Avg. log likelihood -0.287753   
Obs with Dep=0 34      Total obs 68
Obs with Dep=1 34   
 如回归报告所示,三个因素的显著性水平都比较高。表达式可以写为:Z= -3.135210574*F4 - 5.850157583*F12 - 0.2745218447*F16。从该表达式可以看出,三个因素与Z值的变换式负相关的。我们的理论表达式是,并将有财务困境的公司的p值定义为1,没有财务困境的公司的p值定义为0。从财务指标分析来看,比较两类公司的三个指标:F4:主营业务利润率,F12:现金流动负债比和F16:主营业务鲜明程度,没有财务困境的公司这三个指标都明显要高于有财务困境的公司,从我们的样本数据中也说明了这一点。我们再将这些指标与p值联系起来看,由我们得到的回归方程可以说明,三个指标越大,那么将会使Z值越低,也在向-∞靠近,那么p值也就越来越趋向于0,这与我们前面的理论是一致的。
   我们现在再来对这些指标从财务分析的角度来予以解释。从有财务困境的公司来看,一般表现为公司的获利能力不强,资金流转不畅通,债台高筑,不能及时偿还短期债务,长期债权人的权益也不能得到保障。但我们知道,一个公司步入财务困境是一个渐进的过程。从有财务困境公司的最后结果来看,就是本公司不能获取足够多的利润,我们知道,一个公司的利润来源有多种,但正常来说没,主要靠公司的主营业务来获取利润,只有主营业务能够给公司带来足够多的利润,才能够支持公司的日常费用以及其他的支出。其他的利润来源,比如投资收益,其他业务收入等等并不构成公司的主要收入来源。因此,这也就是为什么主营业务利润率和主营业务鲜明程度进入我们模型的理由,这二个指标在模型中起“因”的作用。另外,公司对于短期负债必须予以及时的清偿,这些短期负债的清偿需要的是公司现金流。在现实中,有很多公司帐面的获利能力很好,但帐面上表现为巨额的应收帐款,并不能收现。这些公司也面临着被债权人追偿或诉讼的可能性。
 我们认为,之所以流动比率、净资产报酬率和流动资产周转率没有进入模型,是因为这三个指标都是公司进入了财务困境的结果,而不是原因。我们刚才说过,公司步入财务困境是一个渐进的过程,我们建立预警模型的目的就是要对公司的财务发展状况进行预测,预测需要的是含有“因”信息量的指标,而不是有“果”表现的指标。
(三) 模型拟合优度检验
 我们用Eviews软件提供的Hosmer-Lemeshow检验来对模型的拟合优度进行检验。为了保证该检验的分组效果,我们在分组的时候是进行的随机分组。在组数的确定上,由于我们是配对样本,各有34个样本公司,该检验要求每组的样本量不能太小,另外还要考虑H-L Statistic统计分布的自由度问题,我们选取了分为5组。检验结果如下表四所示:
 表四     拟合优度检验报告
   Quantile of Risk Dep=0 Dep=1 Total H-L
 Low High Actual Expect Actual Expect Obs Value
1 0.0000 0.0382 13 12.8081 0 0.19188 13 0.19476
2 0.0394 0.1277 12 12.8284 2 1.17162 14 0.63920
3 0.1460 0.7379 7 7.46147 6 5.53853 13 0.06699
4 0.7553 0.9012 1 2.44694 13 11.5531 14 1.03683
5 0.9026 1.0000 1 0.35527 13 13.6447 14 1.20048
  Total 34 35.9002 34 32.0998 68 3.13825
H-L Statistic: 3.1383   Prob. Chi-Sq(3) 0.3708
Andrews Statistic: 10.1879   Prob. Chi-Sq(5) 0.0701
 我们可以从最后的统计检验来看模型拟合优度的问题。Eviews提供的Hosmer-Lemeshow检验的零假设为拟合完全充分。我们看最后回归报告中与H-L Statistic的相伴概率值为0.3708,说明我们不能拒绝原假设,也就是说,我们的回归模型拟合优度值比较满意。
(四)模型期望-预测表(Expectation-Prediction Table)
 我们可以根据该表来看模型的分组及对利用样本数据对模型回判精度的检验。本文的理论部分我们已经提到过,我们的样本数据是采用的配对控制样本。也就是说,在样本中,有财务困境的公司和没有财务困境的公司的样本一样,而且我们使用回归方法-LOGIT方法本身的特点,根据先验假定,判别阀值为0.5。根据模型,计算出某个样本的p值大于0.5,那么就认为该公司将步入财务困境,否则,则认为没有财务危机。该表计算结果如表五:
 表五    模型期望-预测表
    Estimated Equation     Constant Probability
 Dep=0 Dep=1 Total Dep=0 Dep=1 Total
P(Dep=1)<=C 31 3 34 34 34 68
P(Dep=1)>C 3 31 34 0 0 0
Total 34 34 68 34 34 68
Correct 31 31 62 34 0 34
% Correct 91.18 91.18 91.18 100.00 0.00 50.00
% Incorrect 8.82 8.82 8.82 0.00 100.00 50.00
Total Gain* -8.82 91.18 41.18   
Percent Gain**  NA  91.18 82.35   
    Estimated Equation   Constant Probability
 Dep=0 Dep=1 Total Dep=0 Dep=1 Total
E(# of Dep=0) 29.20 6.70 35.90 17.00 17.00 34.00
E(# of Dep=1) 4.80 27.30 32.10 17.00 17.00 34.00
Total 34.00 34.00 68.00 34.00 34.00 68.00
Correct 29.20 27.30 56.51 17.00 17.00 34.00
% Correct 85.89 80.30 83.10 50.00 50.00 50.00
% Incorrect 14.11 19.70 16.90 50.00 50.00 50.00
Total Gain* 35.89 30.30 33.10   
Percent Gain** 71.79 60.61 66.20   
 该表包括上下两个表,上面个表格是根据回归模型的分组准确性统计结果;下面个表是根据回归模型对样本数据的预测结果,也可以叫回判准确率统计表。每个表又分为左右两部分,左边部分是回归方程信息统计,右边部分是与相对应的零截距模型信息统计。零截距模型的主要作用就是将之与回归方程进行比较,看回归方程的拟合准确率。
 我们先看上面个表。该表是分组统计信息,我们可以看出,我们的样本中有34个ST公司,p值定义为1;有34个非ST公司,p值定义为0,回归模型分组统计正确个数分别为31,31。正确率为91.18%,整体正确率也为91.18%,相对于零截距模型而言,准确率提高了82.35%,这说明我们的回归模型分组统计效果很好。
 再看下面一个表。该表是对样本数据的回判精度统计信息。该表的左边部分显示,对无财务困境的样本公司判正率为85.89%,对有财务困境的公司的判正率为80.30%,总体判正率为83.10%,判正率很高了。相对于右边的零截距模型而言,整体判正率提高了66.2%。这也说明了我们得到的回归模型整体效果很好。
六、结论
   我们通过选取一定的样本数据,利用已经学习过的计量方法,结合样本公司和我们要建立模型的目的,最终我们选择了非线性的LOGIT模型作为我们的建模方法。最后,通过一步步的分析,通过对大量指标的初步筛选,以及利用变量间的协方差矩阵做进一步的选择,我们选择了六个财务指标作为我们建模的基础指标。将这些指标通过 Eviews软件的模型测试,最终我们选择了三个财务指标,即主营业务利润率、现金流动负债比和主营业务鲜明程度这三个财务指标作为我们模型的根本解释变量。通过对模型拟合优度和判别精度的检验,我们发现我们的模型整体判正率为83.10%,得到了我们预期的目的。

上市公司财务预警模型设计与分析相关范文
上一篇:三大产业的发展与城镇居民家庭消.. 下一篇:宏观经济政策对中国经济周期波动..
点击查看关于 上市公司 财务 预警 模型 设计 分析 的相关范文题目 【返回顶部】
精彩推荐
电气工程自动化原创范文  电子商务原创文章范文
人力资源专业原创文章范文 土木工程原创文章范文
工商管理专业原创范文    药学专业原创范文
汉语言文学专业原创范文  会计专业原创文章范文
计算机技术原创文章范文  金融学原创文章范文
法学专业原创文章范文   市场营销专业原创范文
信息管理专业原创文章范文 学前教育专业原创范文
公共事业管理专业原创范文 英语专业原创范文
教育管理专业原创范文   行政管理专业原创范文
热门范文

关于我们 | 联系方式 | 范文说明 | 网站地图 | 免费获取 | 钻石会员 | 硕士文章范文


范文同学网提供文档范文,原创文章范文,网站永久域名www.lunwentongxue.com ,lunwentongxue-范文同学网拼音首字母组合

本站部分文章来自网友投稿上传,如发现侵犯了您的版权,请联系指出,本站及时确认并删除  E-mail: 17304545@qq.com

Copyright@ 2009-2024 范文同学网 版权所有