关于影响我国南方几省市农业总产值因素的实证分析
问题简述:本文通过对我国南方几省市(包括上海、江苏、浙江、安徽、福建、江西、山东、湖北、湖南、广东、广西、海南、重庆、四川、贵州、云南)在2004年度农业总产值、农业劳动力、有效灌溉面积、农用化肥施用量、农村居民家庭生产性固定资产以及农业机械拥有量的统计数据的收集和整理,建立我国南方地区产出线性计量经济模型,并对模型中是否存在违反古典假设的情况(包括“多重共线性”、“异方差性”和“自相关性”)进行了多种方式的检验分析。然后对症下药,针对模型中所存在的问题选用适当的方法进行修正。最后应用产业经济学和区域经济学的相关知识对修正后的模型进行分析,解释其实际的经济含义,并对其反映出来的现实问题提出几点看法和建议。
模型假设(古典假设)
符号约定:
――分别对应上海、江苏、浙江、安徽、福建、江西、山东、湖北、湖南、广东、广西、海南、重庆、四川、贵州、云南这16个省市在2004年度的农业总产值(单位:亿元)
――分别对应16个省市在2004年度的农业劳动力(单位:万人)
――分别对应16个省市在2004年度的有效灌溉面积(单位:万公顷)
――分别对应16个省市在2004年度的农用化肥施用量(单位:万吨)
――分别对应16个省市在2004年度的农村居民家庭生产性固定资产(单位:元)
――分别对应16个省市在2004年度的农业机械拥有量(单位:万千瓦)
――随机扰动项序列
――残差序列
解释变量是一组固定的值,即是非随机的。
解释变量无测量误差。
模型自身不存在设定误差。
零均值假定,即在给定的的条件下,的条件期望值为零,即
同方差假定,即对于每一个给定的,的条件方差都等于一个常数,即
无自相关性假定,即不存在自相关,或中个项预测值互不影响,即
随机扰动项与解释变量不相关,即
正态性假定,即假定服从均值为0,方差为的正态分布,表示为
统计数据
收集整理的统计数据如下
地区 农业总产值(亿元) 农业劳动力(万人) 有效灌溉面积(万公顷) 农用化肥施用量单位:(万吨) 农村居民家庭生产性固定资产(元) 农业机械总动力(单位:万千瓦)
上 海 98.2 71.74 257.31 15.87 1687.35 112.61
江 苏 981.2 1230.29 3840.98 334.67 3290.25 3029.10
浙 江 529.4 872.96 1403.80 90.38 3738.94 2039.66
安 徽 617.9 1860.57 3285.38 281.28 3908.28 3544.66
福 建 466.8 735.92 939.95 120.29 2958.61 951.91
江 西 383.7 971.26 1873.16 110.98 2398.18 1220.52
山 东 1599.3 2264.62 4760.79 432.65 4733.42 8336.70
湖 北 733.4 1110.71 2043.69 270.32 2431.09 1661.75
湖 南 671.7 1997.67 2675.34 188.33 2191.08 2664.45
广 东 851.7 1543.41 1315.93 199.61 2166.26 1788.80
广 西 500.8 1541.02 1516.67 183.69 2305.27 1696.30
海 南 152.7 187.25 177.27 33.92 4289.36 221.62
重 庆 270.1 813.19 649.69 71.60 2036.17 695.67
四 川 804.7 2413.99 2503.15 208.39 3092.47 1891.06
贵 州 275.5 1322.10 682.71 74.92 2714.07 761.99
云 南 433.9 1690.22 1457.00 129.22 4056.21 1542.91
拟合使用的方法:最小距离法(用Eviews软件实现)
模型建立
初始状态下的农业产出线性模型:
用Eviews软件得到的分析报告如下
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 19:07
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 242.6481 186.0992 1.303864 0.2215
X1 0.058157 0.096590 0.602104 0.5605
X2 0.079750 0.079302 1.005649 0.3383
X3 0.007242 0.300775 0.024076 0.9813
X4 -0.041703 0.058281 -0.715537 0.4906
X5 0.121987 0.053890 2.263647 0.0471
R-squared 0.860155 Mean dependent var 585.6875
Adjusted R-squared 0.790233 S.D. dependent var 368.9720
S.E. of regression 168.9905 Akaike info criterion 13.37756
Sum squared resid 285578.0 Schwarz criterion 13.66728
Log likelihood -101.0205 F-statistic 12.30156
Durbin-Watson stat 3.062212 Prob(F-statistic) 0.000521
模型检验与修正
对解释变量之间多重共线性的检验:
(1)简单相关系数矩阵法:用Eviews得到的协方差矩阵如下
X1 X2 X3 X4 X5
X1 1.000000 0.715554 0.481862 0.258392 0.648671
X2 0.715554 1.000000 0.422811 0.426337 0.885707
X3 0.481862 0.422811 1.000000 0.178946 0.430369
X4 0.258392 0.426337 0.178946 1.000000 0.549919
X5 0.648671 0.885707 0.430369 0.549919 1.000000
大致上可以判断出,之间可能存在共线形。
(2)变量显著性和方程显著性的综合判断:
在显著性水平,样本容量的条件下,t统计量的临界值为。由此可见,除了以外其余变量均是不显著的,所以变量之间存在多重共线性。
(3)对多重共线性进行修正:
变换模型形式:
回归分析报告如下:
Dependent Variable: LNY
Method: Least Squares
Date: 05/17/05 Time: 19:45
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 2.684972 2.294234 1.170313 0.2690
LNX1 -0.089582 0.196497 -0.455895 0.6582
LNX2 0.038025 0.262096 0.145079 0.8875
LNX3 0.059681 0.135152 0.441583 0.6682
LNX4 -0.155838 0.284183 -0.548371 0.5955
LNX5 0.662669 0.302839 2.188191 0.0535
R-squared 0.911189 Mean dependent var 6.170439
Adjusted R-squared 0.866784 S.D. dependent var 0.704874
S.E. of regression 0.257270 Akaike info criterion 0.402616
Sum squared resid 0.661879 Schwarz criterion 0.692336
Log likelihood 2.779075 F-statistic 20.51983
Durbin-Watson stat 3.049254 Prob(F-statistic) 0.000058
可见效果并不明显,因此将采用逐步回归法进行修正:
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 19:48
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 95.40032 150.9178 0.632134 0.5375
X1 0.380309 0.104352 3.644479 0.0027
R-squared 0.486845 Mean dependent var 585.6875
Adjusted R-squared 0.450192 S.D. dependent var 368.9720
S.E. of regression 273.5893 Akaike info criterion 14.17760
Sum squared resid 1047916. Schwarz criterion 14.27418
Log likelihood -111.4208 F-statistic 13.28223
Durbin-Watson stat 1.581933 Prob(F-statistic) 0.002654
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 19:52
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 126.3029 79.74953 1.583744 0.1356
X2 0.250151 0.035819 6.983828 0.0000
R-squared 0.776977 Mean dependent var 585.6875
Adjusted R-squared 0.761047 S.D. dependent var 368.9720
S.E. of regression 180.3639 Akaike info criterion 13.34430
Sum squared resid 455436.0 Schwarz criterion 13.44087
Log likelihood -104.7544 F-statistic 48.77385
Durbin-Watson stat 2.702078 Prob(F-statistic) 0.000006
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 19:49
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 387.9315 140.3982 2.763080 0.0152
X3 0.943405 0.528738 1.784258 0.0961
R-squared 0.185269 Mean dependent var 585.6875
Adjusted R-squared 0.127073 S.D. dependent var 368.9720
S.E. of regression 344.7325 Akaike info criterion 14.63988
Sum squared resid 1663767. Schwarz criterion 14.73646
Log likelihood -115.1191 F-statistic 3.183575
Durbin-Watson stat 2.112477 Prob(F-statistic) 0.096062
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 19:50
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 104.7661 310.1151 0.337830 0.7405
X4 0.160317 0.099163 1.616699 0.1282
R-squared 0.157323 Mean dependent var 585.6875
Adjusted R-squared 0.097132 S.D. dependent var 368.9720
S.E. of regression 350.5949 Akaike info criterion 14.67361
Sum squared resid 1720835. Schwarz criterion 14.77018
Log likelihood -115.3889 F-statistic 2.613717
Durbin-Watson stat 1.642909 Prob(F-statistic) 0.128246
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 19:50
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 239.7873 60.27460 3.978248 0.0014
X5 0.172091 0.021935 7.845660 0.0000
R-squared 0.814703 Mean dependent var 585.6875
Adjusted R-squared 0.801467 S.D. dependent var 368.9720
S.E. of regression 164.4028 Akaike info criterion 13.15898
Sum squared resid 378396.0 Schwarz criterion 13.25556
Log likelihood -103.2719 F-statistic 61.55438
Durbin-Watson stat 2.497236 Prob(F-statistic) 0.000002
综合比较检验和T检验发现的拟合效果较好,从而得到基本方程:
逐一引入其他变量:
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 19:58
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 151.7903 89.06000 1.704360 0.1121
X5 0.148124 0.028098 5.271627 0.0002
X1 0.105625 0.080327 1.314930 0.2113
R-squared 0.836455 Mean dependent var 585.6875
Adjusted R-squared 0.811294 S.D. dependent var 368.9720
S.E. of regression 160.2825 Akaike info criterion 13.15911
Sum squared resid 333976.1 Schwarz criterion 13.30397
Log likelihood -102.2729 F-statistic 33.24441
Durbin-Watson stat 2.614918 Prob(F-statistic) 0.000008
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 19:58
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 170.6280 71.20347 2.396343 0.0323
X5 0.107829 0.044712 2.411646 0.0314
X2 0.107995 0.066552 1.622707 0.1286
R-squared 0.845914 Mean dependent var 585.6875
Adjusted R-squared 0.822208 S.D. dependent var 368.9720
S.E. of regression 155.5785 Akaike info criterion 13.09954
Sum squared resid 314660.8 Schwarz criterion 13.24440
Log likelihood -101.7963 F-statistic 35.68411
Durbin-Watson stat 2.549746 Prob(F-statistic) 0.000005
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 19:59
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 224.6154 73.25642 3.066153 0.0090
X5 0.167864 0.025070 6.695859 0.0000
X3 0.112910 0.288198 0.391781 0.7016
R-squared 0.816865 Mean dependent var 585.6875
Adjusted R-squared 0.788691 S.D. dependent var 368.9720
S.E. of regression 169.6105 Akaike info criterion 13.27225
Sum squared resid 373980.3 Schwarz criterion 13.41711
Log likelihood -103.1780 F-statistic 28.99300
Durbin-Watson stat 2.538863 Prob(F-statistic) 0.000016
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 20:00
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 382.9909 150.1274 2.551106 0.0241
X5 0.187079 0.026184 7.144768 0.0000
X4 -0.057780 0.055509 -1.040916 0.3169
R-squared 0.828959 Mean dependent var 585.6875
Adjusted R-squared 0.802645 S.D. dependent var 368.9720
S.E. of regression 163.9147 Akaike info criterion 13.20393
Sum squared resid 349284.3 Schwarz criterion 13.34879
Log likelihood -102.6314 F-statistic 31.50252
Durbin-Watson stat 2.894780 Prob(F-statistic) 0.000010
保留继续引入变量
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 20:16
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 130.3052 89.82258 1.450696 0.1725
X5 0.106244 0.045509 2.334563 0.0378
X2 0.085656 0.073800 1.160641 0.2684
X1 0.065572 0.086461 0.758396 0.4628
R-squared 0.852961 Mean dependent var 585.6875
Adjusted R-squared 0.816201 S.D. dependent var 368.9720
S.E. of regression 158.1847 Akaike info criterion 13.17772
Sum squared resid 300268.8 Schwarz criterion 13.37087
Log likelihood -101.4218 F-statistic 23.20370
Durbin-Watson stat 2.717507 Prob(F-statistic) 0.000028
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 20:16
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 162.2254 80.79257 2.007924 0.0677
X5 0.106228 0.046825 2.268640 0.0425
X2 0.106219 0.069423 1.530035 0.1519
X3 0.070995 0.275757 0.257455 0.8012
R-squared 0.846760 Mean dependent var 585.6875
Adjusted R-squared 0.808450 S.D. dependent var 368.9720
S.E. of regression 161.4859 Akaike info criterion 13.21903
Sum squared resid 312932.3 Schwarz criterion 13.41218
Log likelihood -101.7522 F-statistic 22.10284
Durbin-Watson stat 2.578380 Prob(F-statistic) 0.000035
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 20:17
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 289.1764 157.9095 1.831280 0.0920
X5 0.124991 0.049583 2.520868 0.0269
X2 0.098992 0.068144 1.452679 0.1720
X4 -0.045506 0.053946 -0.843544 0.4154
R-squared 0.854539 Mean dependent var 585.6875
Adjusted R-squared 0.818174 S.D. dependent var 368.9720
S.E. of regression 157.3337 Akaike info criterion 13.16693
Sum squared resid 297046.7 Schwarz criterion 13.36008
Log likelihood -101.3355 F-statistic 23.49877
Durbin-Watson stat 2.898481 Prob(F-statistic) 0.000026
保留继续引入变量
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 20:20
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 243.2397 175.8907 1.382903 0.1941
X5 0.122153 0.050959 2.397109 0.0354
X2 0.079703 0.075591 1.054401 0.3143
X4 -0.041752 0.055536 -0.751793 0.4680
X1 0.058798 0.088531 0.664148 0.5203
R-squared 0.860147 Mean dependent var 585.6875
Adjusted R-squared 0.809291 S.D. dependent var 368.9720
S.E. of regression 161.1308 Akaike info criterion 13.25262
Sum squared resid 285594.6 Schwarz criterion 13.49405
Log likelihood -101.0209 F-statistic 16.91350
Durbin-Watson stat 3.062277 Prob(F-statistic) 0.000115
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 20:21
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 280.5572 169.9750 1.650579 0.1271
X5 0.123433 0.052253 2.362240 0.0377
X2 0.097703 0.071322 1.369896 0.1980
X4 -0.044794 0.056348 -0.794952 0.4435
X3 0.057148 0.280626 0.203643 0.8424
R-squared 0.855085 Mean dependent var 585.6875
Adjusted R-squared 0.802389 S.D. dependent var 368.9720
S.E. of regression 164.0208 Akaike info criterion 13.28817
Sum squared resid 295931.1 Schwarz criterion 13.52960
Log likelihood -101.3054 F-statistic 16.22668
Durbin-Watson stat 2.928913 Prob(F-statistic) 0.000139
综合比较后发现,引入后,使拟合优度提高,但是对的参数值有明显的影响,且统计检验也不显著,由此可以断定之间存在共线性,舍弃,其他变量对模型的影响均不显著,均舍弃。最后得到修正后的模型:
2.对随机误差项之间异方差性的检验:
(1)图示法:
由图可见其异方差性是相当明显的。
(2)Goldfeld—Quandt检验:
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 20:59
Sample: 1 6
Included observations: 6
Variable Coefficient Std. Error t-Statistic Prob.
C 78.97391 50.63362 1.559713 0.1938
X5 0.295929 0.066086 4.477944 0.0110
R-squared 0.833694 Mean dependent var 274.5000
Adjusted R-squared 0.792117 S.D. dependent var 137.7252
S.E. of regression 62.79473 Akaike info criterion 11.37882
Sum squared resid 15772.71 Schwarz criterion 11.30941
Log likelihood -32.13646 F-statistic 20.05198
Durbin-Watson stat 2.910560 Prob(F-statistic) 0.011007
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 21:01
Sample: 11 16
Included observations: 6
Variable Coefficient Std. Error t-Statistic Prob.
C 344.0503 150.8518 2.280718 0.0847
X5 0.146004 0.035877 4.069551 0.0152
R-squared 0.805459 Mean dependent var 867.3667
Adjusted R-squared 0.756824 S.D. dependent var 391.7530
S.E. of regression 193.1847 Akaike info criterion 13.62637
Sum squared resid 149281.3 Schwarz criterion 13.55696
Log likelihood -38.87912 F-statistic 16.56124
Durbin-Watson stat 2.868491 Prob(F-statistic) 0.015229
可以得到F统计量:,查F分布表,在给定在显著性水平,得临界值,因为,所以表明随机误差存在异方差性。
(3)对异方差性的修正:
加权最小二乘法(WLS):
Dependent Variable: Y
Method: Least Squares
Date: 05/17/05 Time: 21:21
Sample: 1 16
Included observations: 16
Weighting series: W
Variable Coefficient Std. Error t-Statistic Prob.
C 108.0188 33.18635 3.254916 0.0058
X5 0.237648 0.027781 8.554250 0.0000
Weighted Statistics
R-squared -0.092964 Mean dependent var 428.0649
Adjusted R-squared -0.171033 S.D. dependent var 117.3273
S.E. of regression 126.9649 Akaike info criterion 12.64217
Sum squared resid 225681.2 Schwarz criterion 12.73874
Log likelihood -99.13734 Durbin-Watson stat 1.492119
Unweighted Statistics
R-squared 0.696475 Mean dependent var 585.6875
Adjusted R-squared 0.674794 S.D. dependent var 368.9720
S.E. of regression 210.4130 Sum squared resid 619830.6
Durbin-Watson stat 1.123570
对数变换法:
Dependent Variable: LNY
Method: Least Squares
Date: 05/17/05 Time: 21:27
Sample: 1 16
Included observations: 16
Variable Coefficient Std. Error t-Statistic Prob.
C 1.519762 0.406829 3.735628 0.0022
LNX5 0.645790 0.055949 11.54238 0.0000
R-squared 0.904908 Mean dependent var 6.170439
Adjusted R-squared 0.898116 S.D. dependent var 0.704874
S.E. of regression 0.224990 Akaike info criterion -0.029051
Sum squared resid 0.708689 Schwarz criterion 0.067523
Log likelihood 2.232405 F-statistic 133.2266
Durbin-Watson stat 2.442936 Prob(F-statistic) 0.000000
比较两种方法,我们发现X5与Y在对数线性回归下拟合效果较好:
3. 对随机误差项之间自相关性的检验:
(1)图示法:
效果不明显,需要采用DW检验,做进一步的分析。
(2)D—W检验
由回归分析报告得,而在样本容量的条件下,有,可见DW落在不能判别的区域。
(3)游程检验
利用检验残差序列是否随机:
将LnX5升序排列后,相应的残差序列如下表所示:
序号 序号
1 0.01658 1 9 -0.105778 0
2 0.020827 1 10 0.390961 1
3 -0.147581 0 11 0.298295 1
4 -0.186591 0 12 -0.169281 0
5 0.197011 1 13 -0.103778 0
6 -0.159548 0 14 0.192352 1
7 -0.187963 0 15 -0.3716 0
8 0.288996 1 16 0.027099 1
用SPSS进行游程检验,分析报告如下:
Runs Test
VAR00001
Test Value(a) .50
Cases < Test Value 8
Cases >= Test Value 8
Total Cases 16
Number of Runs 11
Z .776
Asymp. Sig. (2-tailed) .438
a Median
由于0.438>0.05,所以在显著性水平下,接受原假设,拒绝备择假设。即认为残差序列的排列是随即的。
五、模型的解释与应用
2004年我国粮食生产实现恢复性增长,增产量创历史新高。但必须清醒地看到,我国农业综合生产能力特别是耕地的综合产出能力并没有实质性提高,农业持续稳定增产的基础并不牢固。所谓农业综合生产能力,是在一定地区、一定时期和一定经济技术条件下,由农业生产诸要素综合投入所形成的、可以相对稳定实现的农业综合产出水平。农业综合生产能力的大小,既取决于土地、生产资料、机械和人力投入的多少,也取决于农业科技水平的高低和农业抗灾能力的强弱。通过以上分析,我们最终得到的我国南方地区农业产出线性计量经济模型的最终形式为,从中不难发现:对我国南方地区农业产出起决定性影响的因素为(16个省市在2004年度的有效灌溉面积)和(16个省市在2004年度的农业机械拥有量),且二者之间存在着共线性。即对于我国南方各省来说有效耕地面积和农业机械投入量的多少对其农业产出起了决定性的作用。针对于此,我们提出以下两点建议:
坚定不移地贯彻“十分珍惜、合理利用土地和严格保护耕地”的基本国策,实行最严格的土地管理制度,切实保护好耕地特别是保护好基本农田。实行严格的耕地占补平衡制度,不仅要做到数量上的占补平衡,而且要做到生产能力上的占补平衡。对耕地质量下降的趋势要给予高度重视,采取有效措施尽快加以遏制。
增加和有效使用现代投入品,提高物质装备对农业发展的支撑能力。农业的现代物质装备水平,是农业现代化程度的重要标志之一,也是农业综合生产能力的决定性因素之一。化肥是地力的重要补充,农药是作物健康的重要保障,农机是人力和畜力的重要延伸。要促进农资工业加快发展,扩大生产,稳定价格,鼓励农民多投入。同时,要引导农民科学施肥、合理用药,提高使用效率,降低成本,减少污染。但是,从模型分析中来看,化肥施用量对产出的影响并不十分明显,可见我国农业在化肥生产与施用方面还有很大的发展空间,应当加强这方面的科技创新,使之切实转化为生产力。